Outline

- Introduction to ICAT
- Transport Pricing Guidance
- Supporting guidance
 - Stakeholder Participation Guidance, Technical Review Guidance
- How to provide comments
- Questions
Introduction to ICAT

Source: Penn State
ICAT objectives

Provide policymakers around the world with tools and support to assess the impacts of their climate policies and actions, to further transparent and ambitious climate action.

Two components:
- ICAT series of guidance
- Country support to build capacity
Multi-stakeholder partnership

DONORS

Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety
CIFF
CHILDREN’S INVESTMENT FUND FOUNDATION
MINISTERO DELL’AMBIENTE E DELLA TERRITORIO E DEL MARE
ClimateWorks

GRANT MANAGEMENT

UNOPS
UNEP DTU PARTNERSHIP
VCS
VERIFIED CARBON STANDARD
WORLD RESOURCES INSTITUTE

IMPLEMENTATION PARTNERS

SUPPORTING PARTNERS

Rainforest Alliance
The Climate, Community & Biodiversity Alliance

ghg management institute
CDP
THE CLIMATE GROUP
ICAT Guidance
Who can use the guidance?

- Governments
- Donor agencies and financial institutions
- Businesses
- Research institutions and non-government organisations (NGOs)
- Stakeholders affected by policies and actions, such as local communities and civil society organisations
Goals for the guidance

Deciding on policy/action design and implementation

Understanding effectiveness of policies/actions

Reporting on policy/action impacts

ex-ante

ex-post

Adapted from: GIZ 2016, Reference Document on Measurement, Reporting and Verification in the Transport Sector
An inclusive, multi-stakeholder process

- Convene working groups
- Run stakeholder survey
- Country scoping and work plan development
- Develop first drafts of guidance
- First public consultation
- Country feedback
- Develop second drafts of guidance
- Second public consultation
- Finalise and release guidance (third drafts)

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

2016 2017 2018 2019
Transport Pricing Guidance

Guidance for assessing the greenhouse gas impacts of transport pricing policies
Purpose of the guidance

- Provide methodological guidance for assessing the impacts of pricing policies in the transport sector
- Simple, straight-forward approach for policymakers and practitioners
- In the context of NDC, NAMA and further national or regional transport strategy or policy development
Applicability - pricing policies addressed

- Fuel subsidy removal
- Increased fuel tax or levy
- Road pricing (road tolls and congestion pricing)
- Vehicle purchase incentives for more efficient vehicles
Guidance document - overview

Part I: Introduction, objectives, steps and overview of transport pricing policies
- Understand the purpose and applicability of the guidance (Chapter 1)
- Determine the objectives of the assessment (Chapter 2)
- Understand transport pricing policies (Chapter 3)
- Understand assessment steps and principles (Chapter 4)

Part II: Defining the assessment
- Clearly describe the policy to be assessed (Chapter 5)
- Identify GHG impacts, define the GHG assessment boundary and assessment period (Chapter 6)

Part III: Assessing impacts
- Calculate base year emissions using approach A, B or C and project baseline scenario (Chapter 7)
- Choose price elasticity values and calculate GHG impacts using approach A, B or C (Chapter 8)
- Assess GHG impacts ex-post (Chapter 9)

Part IV: Monitoring and reporting
- Identify parameters and monitor the performance over time (Chapter 10)
- Report the results and methodology used (Chapter 11)
Part III: Assessing Impacts - Steps

Step 1: Choose Approach A, B or C (Section 4.1.2)

Step 2: Estimate baseline emissions (Chapter 7)

Step 3: Estimate demand impacts of higher fuel prices (price elasticities) (Section 8.1)

Step 4: Estimate GHG impacts (Section 8.2)
<table>
<thead>
<tr>
<th>Approach</th>
<th>Data requirements</th>
<th>Boundaries / Coverage</th>
<th>Fuel types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geographical system boundaries</td>
<td>Passenger / Freight</td>
<td></td>
</tr>
<tr>
<td>Approach A</td>
<td>Only general fuel consumption data (Basis for calculation: top-down energy use data)</td>
<td>National</td>
<td>National transport (passenger and freight)</td>
</tr>
<tr>
<td>Approach B</td>
<td>Specific gasoline and diesel consumption data (Basis for calculation: top-down energy use data)</td>
<td>National</td>
<td>National transport (passenger and freight)</td>
</tr>
<tr>
<td>Approach C</td>
<td>Comprehensive bottom-up travel activity data (e.g., distance travelled by mode j) (Basis for calculation: top-down energy use and bottom-up travel activity data)</td>
<td>Regional, urban</td>
<td>Only passenger transport in an urban context However, the assessment can be conducted for several (large) cities to enable a more extensive geographical coverage</td>
</tr>
</tbody>
</table>
Example: Approach A assessment (ex-ante)

A government plans to implement a national fuel levy. The only data available is total annual energy use in transport sector (aggregated gasoline and diesel consumption)
Step 2: Baseline emissions (I)

- Estimate base year emissions (top-down)
 - Compile activity data (fuel used)
 - Estimate shares of different fuel types (if possible)
 - Compile emission factors, in order of preference:
 1. National energy or environmental statistics
 2. National fuel providers
 3. Default values (provided in guidance)

![Activity data](Annual vehicle fuel use (e.g., TJ)) \(\times\) ![Emission factor](Carbon dioxide equivalent content of fuel (e.g., tCO\(_2\)e/TJ)) = ![Base year emissions](tCO\(_2\)e)
Step 2: Baseline emissions (II)

- Estimate base year emissions
 - Option 1: Simplified method for projecting scenarios
 - Option 2: Advanced methods (comparable growth rates, trend analysis, modelling)
Step 2: Baseline emissions (III)

Example: Approach A

<table>
<thead>
<tr>
<th></th>
<th>unit</th>
<th>Year y (historic; base year)</th>
<th>Year $y+1$ (proj.)</th>
<th>Year $y+2$ (proj.)</th>
<th>Year $y+3$ (proj.)</th>
<th>Year $y+4$ (proj.)</th>
<th>Year $y+5$ (proj.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (in millions)</td>
<td>Millions per capita</td>
<td>50.0</td>
<td>50.8</td>
<td>51.5</td>
<td>52.3</td>
<td>53.1</td>
<td>53.9</td>
</tr>
<tr>
<td>Per capita ratio: gasoline consumption</td>
<td>GJ per capita</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Per capita ratio: diesel consumption</td>
<td>GJ per capita</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>$F_{\text{gasoline},y}$ (projected)</td>
<td>TJ</td>
<td>391,000</td>
<td>396,865</td>
<td>402,818</td>
<td>408,860</td>
<td>414,993</td>
<td>421,218</td>
</tr>
<tr>
<td>$F_{\text{diesel},y}$ (projected)</td>
<td>TJ</td>
<td>391,000</td>
<td>396,865</td>
<td>402,818</td>
<td>408,860</td>
<td>414,993</td>
<td>421,218</td>
</tr>
<tr>
<td>$BE_{\text{gasoline},y}$ (projected)</td>
<td>ktCO$_2$</td>
<td>27,096</td>
<td>27,503</td>
<td>27,915</td>
<td>28,334</td>
<td>28,759</td>
<td>29,190</td>
</tr>
<tr>
<td>$BE_{\text{diesel},y}$ (projected)</td>
<td>ktCO$_2$</td>
<td>28,973</td>
<td>29,408</td>
<td>29,849</td>
<td>30,297</td>
<td>30,751</td>
<td>31,212</td>
</tr>
<tr>
<td>$BE_{\text{total},y}$ (projected)</td>
<td>ktCO$_2$</td>
<td>56,069</td>
<td>56,910</td>
<td>57,764</td>
<td>58,631</td>
<td>59,510</td>
<td>60,403</td>
</tr>
</tbody>
</table>

Input data for base year

Calculated emissions for base year
Step 3: Fuel demand impact (I)

- Ex-ante: how does a change in fuel price affect fuel demand?

Own-price elasticity

Price changes by +10%, demand changes by -5%, price elasticity of demand equals demand change divided by price change:

\[-5%/+10% = -0.5.\]

- Possible (major) impacts:
 - Reduced vehicle travel
 - Increased switching to more efficient fuelled vehicles
 - Increased switching to different transport modes
Step 3: Fuel demand impact (II)

Choosing accurate own-price fuel elasticities:

1. Use country-specific price elasticity data (empirical)
2. Use default elasticity values provided in the guidance:

<table>
<thead>
<tr>
<th>Fuel mix price (2016 US ¢ per litre)</th>
<th>Income per capita (2016 USD/population)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 12,000</td>
</tr>
<tr>
<td>≤ 30</td>
<td>-0.15</td>
</tr>
<tr>
<td>30 - 80</td>
<td>-0.22</td>
</tr>
<tr>
<td>≥ 80</td>
<td>-0.26</td>
</tr>
</tbody>
</table>

Values adapted from Dahl 2012

Example: Average income in 2016 = USD 13,000 per capita; Average fuel mix price = USD 0.40 per litre → own-price elasticity of demand = -0.24
Step 4: GHG impacts (I)

- The increase of fuel prices leads to decreasing fuel demand, which subsequently reduces GHG emissions.
- The GHG impact is the difference between GHG emissions in the policy scenario and the baseline scenario.
- Needed input data (from earlier steps):
 - Baseline fuel use (gasoline/diesel) for each year y
 - Baseline emissions (from gasoline/diesel) for each year y
 - Fuel mix own-price elasticity
 - Relative (%) fuel mix price increase
Step 4: GHG Impacts (II)

Example: Approach A

<table>
<thead>
<tr>
<th>Label</th>
<th>Approach A</th>
<th>unit</th>
<th>Data collection/calculation</th>
<th>Example year</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Baseline fuel use (F_Y)</td>
<td>TJ</td>
<td>Input value: from Section 7.2.1 and 7.4</td>
<td>782,000</td>
</tr>
<tr>
<td>B</td>
<td>Baseline emissions (BE$_{fuel\ mix\ y}$)</td>
<td>tCO$_2$</td>
<td>Input value: from Section 7.2.1 and 7.4</td>
<td>56,069,400</td>
</tr>
<tr>
<td>C</td>
<td>Fuel mix price elasticity ($\varepsilon_{fuel\ mix}$)</td>
<td>-</td>
<td>Input value: from Section 8.1.2</td>
<td>-0.24</td>
</tr>
<tr>
<td>D</td>
<td>Relative fuel mix price increase</td>
<td>%</td>
<td>Input value: according to planned policy</td>
<td>4.5%</td>
</tr>
<tr>
<td>E</td>
<td>Anticipated fuel use</td>
<td>TJ</td>
<td>= ((C x D) + 1) x A</td>
<td>773,550</td>
</tr>
<tr>
<td>F</td>
<td>Anticipated GHG emissions</td>
<td>tCO$_2$</td>
<td>= ((C x D) + 1) x B</td>
<td>55,463,850</td>
</tr>
<tr>
<td>G</td>
<td>Anticipated GHG impacts (emissions reductions)</td>
<td>tCO$_2$</td>
<td>= F – B</td>
<td>-605,650</td>
</tr>
<tr>
<td>H</td>
<td>Anticipated relative impact</td>
<td>%</td>
<td>= G / B</td>
<td>-1.1%</td>
</tr>
</tbody>
</table>

Notes:
- Data collection/calculation for F_Y, $BE_{fuel\ mix\ y}$, and $\varepsilon_{fuel\ mix}$.
- Example year values for F_Y, $BE_{fuel\ mix\ y}$, and $\varepsilon_{fuel\ mix}$.
Interpretation of results

- High uncertainties
 - Activity data estimation (e.g., fuel consumption)
 - Emission factors, other conversion factors (e.g., net calorific values NCV, etc.)
 - Projection of base year emissions
 - Estimation of price elasticities (even more so if default values are used)

→ It is crucial to be transparent about high uncertainties and to be cautious with the interpretation of the results (i.e., indicate a range of the possible GHG impact rather than a single result)
Example: Approach C assessment (ex-ante)

A government also wants to assess the substitution of individual motorised transport by car with public transport.
Comparison of Approach C with A/B

- Different system boundaries:
 - Focus on passenger transport (no freight transport is included in the assessment)
 - Inclusion of (urban) public transport system in the analysis, therefore focus on urban transport
- Not only gasoline and diesel, but also electricity as a fuel (users can also extend the guidance to different fuels in a similar manner)
- Bottom-up and top-down approach
- Cross-price elasticities
Step 2: Baseline emissions

- **Bottom-up travel activity data:**
 - Average vehicle kilometres travelled (car/bus)
 - Distance travelled
 - Load factors / occupancy
 - Average fuel consumption per vehicle kilometre

- **Top-down fuel consumption and PKM data:**
 - Electricity and diesel use in rail transport
 - Passenger kilometres (PKM) in rail transport

Example: Approach C
Step 3: Fuel demand impact

- Cross-price elasticities

Cross-price elasticity

Price of substitute good changes by +10%, demand changes by +20%, cross-price elasticity of demand equals demand change divided by price change: +20%/+10% = +2.

Default values:

<table>
<thead>
<tr>
<th>Gasoline price (2016 US $ per litre)</th>
<th>Income per capita (2016 USD/population)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 12,000</td>
</tr>
<tr>
<td>< 30</td>
<td></td>
</tr>
<tr>
<td>Bus 0.09</td>
<td></td>
</tr>
<tr>
<td>Rail 0.15</td>
<td></td>
</tr>
<tr>
<td>30-80</td>
<td></td>
</tr>
<tr>
<td>Bus 0.14</td>
<td></td>
</tr>
<tr>
<td>Rail 0.22</td>
<td></td>
</tr>
<tr>
<td>> 80</td>
<td></td>
</tr>
<tr>
<td>Bus 0.16</td>
<td></td>
</tr>
<tr>
<td>Rail 0.25</td>
<td></td>
</tr>
</tbody>
</table>
Step 4: GHG impacts

- More input data needed compared to Approaches A and B
- Results reflect mode shifts and increasing capacity needs for public transport (in PKM) due to fuel price increase
- Increased public transport demand compensates a part of the emission reduction through reduced fuel consumption
Stakeholder Participation

Guidance to support stakeholder participation in design, implementation and assessment of policies and actions, including of GHG impacts

Source: Africa Center
Elements covered in the guidance

Part I: Introduction, objectives and key concepts
Understand the purpose and applicability of the guidance (Chapter 1)
Determine the objectives of stakeholder participation (Chapter 2)
Understand key concepts, elements and principles (Chapter 3)

Part II: Key elements of effective stakeholder participation
Develop a stakeholder participation plan (Chapter 4)
Identify and understand the stakeholders of the policy (Chapter 5)
Create multi-stakeholder bodies (Chapter 6)
Provide information to stakeholders (Chapter 7)
Design and conduct consultations (Chapter 8)
Establish a grievance redress mechanism (Chapter 9)

Part III: Reporting on stakeholder participation
Report how stakeholder participation was designed and conducted (Chapter 10)
Stakeholder participation in transport policies

<table>
<thead>
<tr>
<th>Chapter/step in this guidance document</th>
<th>Why stakeholder participation is important at this step</th>
<th>Relevant chapters in Stakeholder Participation Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 7 – Estimating the baseline scenario and baseline emissions</td>
<td>• Inform assumptions on expected effects of existing and planned policies</td>
<td>Chapter 8 – Designing and conducting consultations</td>
</tr>
</tbody>
</table>
Technical Review

Guidance to support the review of the impacts of policies and actions

Source: Asia Development Bank
Overview of the guidance

Part I: Introduction, objectives, and key concepts
- Understand the purpose and applicability of the guidance (Chapter 1)
- Understand key concepts, steps and technical review principles (Chapter 2)

Part II: Overview of technical review
- Understand the types of technical review that can be pursued (Chapter 3)
- Learn about reviewer qualifications to inform team design and meet review objectives (Chapter 4)

Part III: Technical review process
- Establish the objectives, scope and criteria of the technical review (Chapter 5)
- Prepare the documents and evidence for technical review (Chapter 6)
- Develop a technical review plan (Chapter 7)
- Conduct the technical review using an established process (Chapter 8)
- Report on the results of the technical review (Chapter 9)
Collaborase is an online software that supports an unlimited number of reviewers and allows reviewers to more easily provide comments and navigate documents.

www.collaborase.com/icat
Accessing the guidance documents

To comment on the guidance, submit your email address on the document page(s) linked below. A confirmation email will be sent to your email account with a link to access the document.

<table>
<thead>
<tr>
<th>ICAT Introductory Guide</th>
<th>ICAT Sustainable Development Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAT Renewable Energy Guidance</td>
<td>ICAT Transformational Change Guidance</td>
</tr>
<tr>
<td>ICAT Buildings Efficiency Guidance</td>
<td>ICAT Stakeholder Participation Guidance</td>
</tr>
<tr>
<td>ICAT Transport Pricing Guidance</td>
<td>ICAT Technical Review Guidance</td>
</tr>
<tr>
<td>ICAT Agriculture Guidance</td>
<td>ICAT Non-State and Subnational Action Guidance</td>
</tr>
<tr>
<td>ICAT Forest Guidance</td>
<td></td>
</tr>
</tbody>
</table>
Accessing the documents

ICAT Forest Guidance

Submit comments
To post a comment, click the ‘Comment’ button below any section title. Where relevant, we recommend comments include (1) a comment title/issue and (2) a proposal for a change or new text. The comment form allows you to add images, files and/or links. You can also view comments that have already been submitted.

To view comments in a single section, click the ‘Comment’ button below the section title to display the list of comments for that section. Click the comment title to read the comment and any replies. To view all comments for the full document, click the ‘Comment’ tab at the top of the webpage – this will open the comments page with a searchable sortable table of all the comments. If you view comments by other reviewers, we encourage you to use the ‘Vote’ button to easily express your agreement or disagreement.

Enter your email address *

Submit
ICAT Agriculture Guidance

Note to Reviewers

Updated 6 days ago by Sinclair Vincent

Welcome to the ICAT Agriculture Guidance - thank you for taking the time to review this guidance document.

You can provide feedback by clicking on the 'Comments' button at the top of each section of the document. You can also comment or vote on other reviewers' comments. To answer optional survey questions, click the 'Survey' button at the top of the section. If you haven't already, please provide the name of your organisation and country by clicking on the 'Survey' button above, which will help us analyse the results. For further information on using Collaborase please view this instructional video.

We hope you'll enjoy reviewing the document. We invite you to provide all and any feedback you have on it. Some questions you might bear in mind as you read the document include:

- Do you have any general feedback on the guidance document?
- Do you think the guidance will help meet the needs of the intended users of the guidance document (e.g., understanding and reporting on impacts of policies and actions)?
- How user-friendly is the document? Does the document contain the right level of detail? Too long, too short?
- Are any topics missing that you would like to see covered?
- Would it be useful for ICAT to develop templates for assessment plans or assessment reports, or are users likely to prefer to use their own templates?

To access the other documents in the ICAT series of guidance visit the ICAT Collaborase homepage.

Thank you again for taking the time to review this guidance document.

The ICAT team
How to comment in Collaborase

9 Estimating Impacts Ex-Ante

Updated 15 days ago by Sinclair Vincent

Comments 0

This chapter describes how to estimate the expected future impacts of the policy or action (ex-ante assessment). In this chapter, users estimate policy scenario values for the indicators included in the assessment boundary. The impacts of the policy or action are estimated by subtracting baseline values (as determined in Chapter 8) from policy scenario values (as determined in this chapter). Users not quantitatively assessing impacts ex-ante can skip this chapter.

Figure 9.1: Overview of steps in the chapter

1. Define and describe the policy scenario for each indicator (Section 9.1)
2. Estimate policy scenario values for each indicator (Section 9.2)
3. Estimate the net impact of the policy or action on each indicator (Section 9.3)

Checklist of key recommendations

- Define a policy scenario that represents the conditions most likely to occur in the presence of the policy or action over time for each indicator being estimated, taking into account all specific impacts included in the quantitative assessment boundary
- Estimate the net impact of the policy or action on each indicator by subtracting baseline values from policy scenario values, taking into account all specific impacts included in the quantitative assessment boundary
- Separately assess the impacts of the policy or action on different groups in society where relevant
How to comment in Collaborase

9 Estimating Impacts Ex-Ante

Updated 15 days ago by Sinclair Vincent

Comments 0

Reviewer Comments

0 Open 0 Closed Newest

No Comments Yet

This chapter describes how to estimate the expected future impacts of the policy or action (ex-ante assessment). In this chapter, users estimate policy scenario values for the indicators included in the assessment boundary. The impacts of the policy or action are estimated by subtracting baseline values (as determined in Chapter 8) from policy scenario values (as determined in this chapter). Users not quantitatively assessing impacts ex-ante can skip this chapter.

Figure 9.1: Overview of steps in the chapter

- Define and describe the policy scenario for each indicator (Section 9.1)
- Estimate policy scenario values for each indicator (Section 9.2)
- Estimate the net impact of the policy or action on each indicator (Section 9.3)
9.2 Estimate GHG impacts

Updated 12 days ago by Sinclair Vincent

Reviewer Comments

No Comments Yet

Add a comment

Issue* - brief description of a problem:
Deemed estimates approach

Proposal - suggested change or solution to the problem:
For users following the deemed estimates approach suggest allowing the following:

When using the deemed estimates approach, users can calculate the GHG impact of the policy directly, without explicitly defining separate baseline and policy scenarios. In this case, users should use the instructions in Section 9.6 with ex-post activity data and emission factors.

Estimate the GHG impact of the policy

Notify Me
Anonymous

Publish
Cancel
How to comment in Collaborase

9.2 Estimate GHG impacts

Updated 12 days ago by Sinclair Vincent

Reviewer Comments

1 Open 0 Closed Newest

Deemed estimates approach

Reviewer Comment opened by Carolyn Ching 1 minute ago on version 2
How to comment in Collaborase

9.2 Estimate GHG impacts

Updated 12 days ago by Sinclair Vincent

Comments 1

Deemed estimates approach #1

Active Carolyn Ching opened this comment 1 minute ago on V.2 · 0 replies

Estimate the GHG impact of the policy

Carolyn Ching:

For users following the deemed estimates approach suggest allowing the following:

When using the deemed estimates approach, users can calculate the GHG impact of the policy directly, without explicitly defining separate baseline and policy scenarios. In this case, users should use the instructions in Section 8.6 with ex-post activity data and emission factors.

Your reply

[Reply text area]

Publish Cancel
How to comment in Collaborase

9.2 Estimate GHG impacts

Updated 12 days ago by Sinclair Vincent

Reviewer Comments

1 Open 0 Closed Newest

Deemed estimates approach
Reviewer Comment opened by Carolyn Ching 2 minutes ago on version 2
Answering survey questions in Collaborase

6 Choosing Which Transformational Change Characteristics to Assess

This chapter provides guidance on identifying and choosing transformational change characteristics that are relevant for a policy or action. It also defines the transformational change assessment boundary and the assessment period.

Figure 6.1: Overview of steps in the chapter

- Describe transformational change characteristics of the policy or action (Section 6.1)
- Choose transformational change characteristics to be assessed (Section 6.2)
- Define the assessment boundary and the assessment period (Section 6.3)

Checklist of key recommendations:

- Identify and describe transformational characteristics of the policy or action
- Choose characteristics to be assessed based on their relevance to a policy or action and the society in which it is implemented
- Define the assessment boundary in terms of geographical and sectoral coverage of transformational characteristics selected for assessment
- Define the assessment period
This chapter describes characteristics of transformational impact. Are the descriptions of characteristics sufficient and clear enough to enable assessment of impacts for transformation specific to a policy or action? If not, how can we improve them?

It would be helpful if these descriptions could be more detailed.

In Table 6.4 users are asked to describe characteristics of transformational outcomes for GHG and SD at scale and over time. Is further guidance needed on how to use other ICAT guidance for GHG and SD impact assessment and how to assess impacts of multiple outcomes for GHG and SD?

☑️ Yes
☐ No

The guidance provided is sufficient.
Collating and reviewing comments

ICAT Agriculture Guidance

All Comments: Main

Search | View All | Newest

Filters

Author comments
Reviewer comments
My comments 0

Open
Active 0
Deferred 0

Closed
Accepted 0
Rejected 0

No Comments Yet
Questions?

Consultation ends 24 September
Thank You

Jürg Füssler -- juerg.fuessler@infras.ch
Felix Weber -- felix.weber@infras.ch
Jerry Seager -- jseager@v-c-s.org
Sinclair Vincent -- svincent@v-c-s.org

www.climateactiontransparency.org