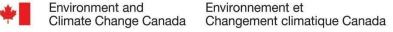


ENERGY SECTOR INVENTORY


DISCLAIMER

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, recording or otherwise, for commercial purposes without prior permission of Vanuatu. Otherwise, material in this publication may be used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given to Vanuatu and ICAT as the source. In all cases the material may not be altered or otherwise modified without the express permission of Vanuatu.

PREPARED UNDER

The Initiative for Climate Action Transparency (ICAT), supported by Austria, Canada, Germany, Italy, the Children's Investment Fund Foundation and the ClimateWorks Foundation.

The ICAT Secretariat is managed and supported by the United Nations Office for Project Services (UNOPS)

WUNOPS

CONTENTS

DISCLAIMER	1
PREPARED UNDER	1
LIST OF TABLES	4
LIST OF FIGURES	4
ABBREVIATIONS AND ACRONYMS	5
1.1 ENERGY OVERVIEW	б
1.1.1 TRANSPORT ACTIVITIES	7
1.1.2 METHODS OF EMISSIONS ESTIMATION	8
1.1.3 REFERENCE APPROACH	9
1.1.4 SECTORAL APPROACH	1
1.2 REFERENCE MANUAL	2
1.2.1A. TRANSPORT DATA COLLECTION FOR THE SECTORAL APPROACH	2
1.2.1B. REFERNCE APPROACH DATA COLLECTION14	4
1.2.2. DATA SOURCES (Departments, Stakeholders) 14	
1.2.3. DATA ASSUMPTIONS	8
1.3 CALCULATING GREENHOUSE GAS EMISSION	0
1.3.1 USING TIER 1 APPROACH WITH SCARES DATA ON FUEL SALES	0
1.3.2 STEP- BY- STEP CALCULATION, DOCUMENTING RESOURCES USED (sectoral approach)	4
1.3.3 ROAD TRASNPORT TIMESERIES	9
1.3.4 QAULITY ASSURANCE AND QUALITY CONTROL (QA/QC)	5
1.4 IMPROVEMENT PLAN	7
1.4.1: VANUATU'S CURRENT INVENTORY PROCESS	7

AI	NNEX	. 81	
RI	EFERENCE	. 80)
	1.4.3: PROPOSED IMPROVEMENT ACTIONS	. 79)
	1.4.2: AREAS IDENTIFIED FOR IMPROVEMENT AND IDENTIFIED GAPS	. 78	;

LIST OF TABLES

Table 1: below shows the Tier 1 activity data (AD) requirement to estimate CO2, N2O, and CH4 from the three transport activities,
public road transport, domestic aviation, and domestic waterborne navigation
Table 2: Detailed Information of Collecting Activity Data from Sources. 16
Table 3: showing an example of the conversion Tonnes to Kilo Tonnes. 34
Table 4: showing as example of the conversion of Fuel Consumption (kt) to Fuel consumption (TJ)
Table 5: below shows and example of the total fuel consumed (TJ) from the addition of both Container ship and high-speed ferry 35
Table 6: showing an example of the conversion litres to Kilograms
Table 7: showing an example of the conversion of kilograms to kt. 51
Table 8: showing an example of the conversion from Fuel consumption (kt) to Fuel Consumption (TJ). 51
Table 9: Total CO2 emissions (gg) and emission factor for each fuel type from 1994 to 2023
Table 10: Total CH4 emission (gg) and emission factor for each fuel type from 1994 to 2023.70
Table 11: Total N2O emission (gg) and emission factor for each fuel type from 1994 to 2023

LIST OF FIGURES

Figure 1: Displays the decision tree employed for selecting the method approach for actual CO2 from fuel combustion in Water-borne	
navigation emissions. The Decision implemented during this operation are indicated by the red arrows	
Figure 2: Displays the decision tree employed for selecting the method approach for actual emissions (Applied to each greenhouse	
gas) from fuel combustion in aircraft emissions. The Decision implemented during this operation are indicated by the red arrows 66	
Figure 3.: The step-by-step conversion of liters to terajoules is shown below	

ABBREVIATIONS AND ACRONYMS

AD	Activity Data
СО	Carbon Monoxide
CO_2	Carbon Dioxide
CH ₄	Methane
DOCC	Department of Climate Change
EF	Emission Factor
GHG	Green House Gases
NCV	Net Calorific Value
N_2O	Nitrous oxide
NMVOCs	Non-methane Volatile Organic Compounds
NOx	Oxides of Nitrate
PM	Particulate matter
PLTA	Public Land Transport Authority
QA/QC	Quality Assurance/Quality Control
RA	Reference Approach
SO_2	Sulphur dioxide
TJ	Terajoules

1.1 ENERGY OVERVIEW

The energy sector is proven to be the predominant greenhouse gases (GHGs) emitter in almost every country in the world. The GHGs in this sector include emissions from fuel combustion activities, transportation, and other energy-generated activities in constructions, manufacturing, commercial, institutional, and residential sources. This manual focuses on the energy sector emissions from the combustion of petroleum or fossil fuels from mobile sources (Ministry of Climate Change, 2020).

Mobile sources create direct greenhouse gas emissions from the combustion of different fuel types. The greenhouse gases emitted include carbon dioxide (CO₂), Methane (CH₄) and Nitrous oxide (N₂O) with other pollutants, which are not direct greenhouse gases, as well involving such as carbon monoxide (CO), Non-methane Volatile Organic Compounds (NMVOCs), Sulphur dioxide (SO₂), particulate matter (PM) and oxides of nitrate (NO_x). All these gases contribute to the local and regional air pollution. This manual focuses on the development of estimating direct greenhouse gases - CO₂, CH₄, and N₂O - from mobile combustion that is described in the 2006 IPCC Guidelines as emissions from transport (category 1.A.3). Mobile combustion of fuels that generates greenhouse gas emissions can estimated by using transport activity such as road, air, off-road, water-borne navigation, and railways and applying relevant emission factors¹.

There is a need for more work to put into filling the numerous gaps to provide information on emissions from different vehicle types as well as the ageing effects in catalytic control of road vehicle emissions. Similarly, it is vital to strengthen the data and information on the appropriate emission factors intended for road transport in developing countries.

International bunker fuels refer to the fuels combusted in ships at sea and by airplanes engaged in international movements. The IPCC recommends that each country estimate emissions originating from international bunker fuels sold within national borders. However, these emissions should be reported separately and, to the extent feasible, excluded from national totals (IPCC Guidelines for National Greenhouse Has Inventories, 1996).

International maritime bunkers refer to the quantities of fuels delivered to ships of all flags engaged in international navigation, encompassing operations at sea, on inland lakes and waterways, and in coastal waters. Consumption by ships engaged in domestic navigation, fishing vessels, and military forces is excluded from this definition.

¹ See Table 3.1.1 for Detailed sector split for the transport sector in the 2006 IPCC Guideline, Volume 2, Chapter 3 Mobile Combustion.

International aviation bunkers refer to the quantities of fuels delivered to aircraft specifically for international flights, determined by the departure and landing locations rather than the nationality of the airline. Fuels used by airlines for their road vehicles and military applications of aviation fuels are excluded from this definition.

The transport sub-categories that are most relevant for Vanuatu include road transport, domestic waterborne navigation, and domestic aviation.

1.1.1 TRANSPORT ACTIVITIES

Domestic waterborne navigation

This category focuses on domestic water-borne navigation in Vanuatu from cargo ships, ferry, fiberglass boats and private boats that are driven mostly by large, slow as well as medium diesel engines. Vanuatu has more than 20 vessels that services the locals from one island to another. This also include transporting heavy materials from one port to another within the country. Water-borne navigation emits direct GHGs as carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O).

It also emits other air pollutants like carbon monoxide (CO), non-methane volatile organic compounds (NMVOCs), Sulphur dioxide (SO₂), particulate matter (PM) and oxides of nitrogen (NO_x). Note that these pollutants are not mandatory for reporting purposes in this manual (Waldron, et al., Chapter 3 Mobile Combustion , 2006).

Domestic aviation

Domestic aviation focuses on civil domestic passenger and freight traffic that departs and arrives within the same country. From one domestic airport to another. Vanuatu has five commercial operators with around 30 domestic aircraft to connect and service the nation's 65+ inhabited islands (PASO, 2023).

The emissions produced from aviation comes from the combustion of aviation gasoline and jet fuel such as jet kerosene and jet gasoline. Direct GHG emissions from aircraft engines include approximately 70% of CO₂. Modern gas turbines emit little to no N₂O. Modern engines emit little to no CH₄. However, older technology engines emit CH₄ by gas turbines during idle. Other pollutants resulting from the use of fossil fuels in civil aviation include approximately 30% H₂O, and less than 1% each of NO_x, CO, SO_x, NMVOC, particulates, and other trace components, including hazardous air pollutants. Unlike direct greenhouse gases such as CO₂, CH₄, and N₂O, these pollutants are not mandatory for reporting purposes. Emissions depends on the type and number of aircraft operations, the efficiency and type of aircraft engine, type of fuel used, length of flight from one airport to another, time spent at each stage of flight, power setting and, where appropriate, the altitude where exhaust gasses are emitted (Waldron, et al., Chapter 3 Mobile Combustion , 2006).

Road transportation

In IPCC road transportation is categorized under Transport (category 1.A.3b) that involves all types of light-duty and heavy-duty vehicles. Such vehicles compose of light trucks and automobiles, heavy duty vehicles such as buses and tractor trailers, and on-road motorcycles. All these vehicles function on several different fuel types, either gaseous or liquid (Waldron, et al., Chapter 3 Mobile Combustion , 2006). The transport sub-sector is known to be the largest GHG emitter as well as fossil fuel purchaser under the energy sector in Vanuatu. Land transport itself consumes more than 50% of petroleum products that is imported to the country for domestic transportation consumption. Petrol (Gasoline) and Diesel are mainly used in the road transport sector. Lubricants are also used for two-stroke engines. The road transport also includes the off-road transportation as part of GHGs emission sources (Ministry of Climate Change, 2020). Emissions can be estimated either based on fuel consumed (represented by fuel sold) or the distance traveled by the vehicles. Typically, the first approach (fuel sold) is suitable for estimating CO₂ emissions, while the latter (distance traveled by vehicle type and road type) is suitable for estimating CH₄ and N₂O emissions.

There is an estimation of 1,800 km of roads in Vanuatu – 234 km are sealed while 1,142km remain unsealed (gravel). The remaining are earth roads that cover about 4 km. Port Vila and Luganville account for most of the sealed roads in the urban areas. Sealed roads have been extended to rural areas as well as Efate and Santo Island. Most of the islands in Vanuatu road links are constructed to provide service to rural communities (MOCC, 2021). With more road construction occurring, the number of vehicles imported into the country will increase. The 2022 reports have stated that Vanuatu has become the 193^{rd} largest car importer in the world.

Therefore, road transportation in Vanuatu is suitable for prioritizing data efforts, given the country's substantial data availability and information resources. This transport activity warrant prioritization for the energy sector manual due to its significant role as the largest emitter of greenhouse gases (GHGs) and primary consumer of fossil fuels in the country.

1.1.2 METHODS OF EMISSIONS ESTIMATION

Two methods can be employed to calculate CO2 emissions from the road transport subsector:

- The *sectoral approach (bottom-up)* involves estimating CO₂ emissions by analyzing data on the quantities of each fuel type consumed in the transport sector across different vehicle categories, multiplied by appropriate emission factors.
- The *reference approach (top-down)* substitutes actual fuel consumption data with the apparent national consumption of each fuel type, multiplied by the proportion of each fuel type used specifically within the transport subsector. This method is less

accurate compared to the sectoral approach, as it relies on approximate estimates of fuel usage proportions across different energy sectors.

According to the 2006 IPCC Guidelines, the sectoral approach is considered more precise and aligns with best practices. Conversely, the reference approach (top-down) is less accurate due to its reliance on generalized estimates of fuel proportions used by each energy subsector.

Non- CO₂ emissions within Tier 1 methodology can be estimated using fuel consumption data and default emission factors provided in the 2006 IPCC Guidelines.

1.1.3 REFERENCE APPROACH

The Reference Approach employs a top-down methodology that utilizes a country's energy supply data to compute carbon dioxide (CO_2) emissions resulting from the combustion of fossil fuels. This approach relies on national statistics regarding fuel imports, exports, and stock changes, drawing directly from the National Energy Balance without categorizing specific IPCC categories. It also accounts for the use of fossil fuels in international bunkers, such as international aviation and waterborne navigation.

Furthermore, the Reference Approach acknowledges that some portions of fossil fuels consumed within the country is not combusted but used for non-energy purposes. This component is referred to as "Excluded carbon," and its data are derived from the energy balance. This includes fossil fuels utilized in industrial processes as catalysts, feedstock, or lubricants.

The central concept of the Reference approach is Apparent Consumption. It shows the net consumption of fuels in the country excluding international bunkers and stock changes (equation 6.3 in the 2006 IPCC Guidelines²):

Apparent consumption = Production + Import - Export - International bunker - Stock change

Please note that the term "Production" applies solely to the calculation of apparent consumption for primary fuels, which are naturally occurring fuels like coal, crude oil, and natural gas. For all other fuels categorized as "secondary" (or fuel products such as gasoline and lubricants derived from primary fuels), the production term is not considered (production = 0).

Apparent consumption and excluded carbon serve as the activity data for calculations under the reference approach. The emission factor utilized for estimating emissions under the reference approach is determined by the carbon content of the fuel, the oxidation factor of the fuel (defaulting to 1), and the ratio of the molar masses of carbon dioxide to carbon (44/12). The Reference Approach is created to

² https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_6_Ch6_Reference_Approach.pdf

calculate CO₂ emissions from fuel combustion that starts from a high-level energy supply data. It does not split fuels by category but only calculates CO₂ emissions. (Treanton, et al., CHAPTER 6 REFERENCE APPROACH, 2006).

EQUATION 6.1 CO₂ EMISSIONS FROM FUEL COMBUSTION USING THE REFERENCE APPROACH

 $CO_{2} Emissions = \sum_{all \ fuels} \left[((Apparent Consumption_{fuel} \bullet Conv Factor_{fuel} \bullet CC_{fuel}) \bullet 10^{-3} \\ - Excluded Carbon_{fuel}) \bullet COF_{fuel} \bullet 44/12 \right]$

CO ₂ Emissions	= CO ₂ emissions (Gg CO ₂)					
Apparent Consumption	= production + imports - exports - international bunkers - stock change					
Conv Factor (conversion factor)	= conversion factor for the fuel to energy units (TJ) on a net calorific value basis					
CC	= carbon content (tonne C/TJ)					
	Note that tonne C/TJ is identical to kg C/GJ					
Excluded Carbon	=carbon in feedstocks and non-energy use excluded from fuel					
	combustion emissions (Gg C)					
COF (carbon oxidation factor)	= fraction of carbon oxidised. Usually the value is 1, reflecting complete oxidation. Lower values are used only to account for carbon retained indefinitely in ash or soot					
44/12	= molecular weight ratio of CO_2 to C.					

1.1.4 SECTORAL APPROACH

The Sectoral Approach is a bottom-up approach that uses the activity data from each IPCC category (in the transport subsector – by each type of transport) and the relevant emission factors to estimate emissions from that category for each fuel. The total GHG emissions using the sectoral approach, are obtained by summing up emissions by each type of transport by each fuel using a general equation

GHG emissions = Sum (Activity Data fuel, transport type x Emission Factor)

Unlike the Reference approach, the sectoral approach is category-specific and it allows estimating emissions of each GHG, not only CO_2 . It is IPCC's good practice to apply, whenever possible, the sectoral approach for calculating emissions and use the Reference approach as verification of the CO_2 estimations from the energy sector.

For Tier 1 calculations for CO_2 from each type of transport, the activity data is fuel sold for that type of transport expressed in energy units (TJ). The emission factors are expressed as a mass of CO_2 per TJ of fuel consumed (kg/TJ) for each type of fuel. 2006 IPCC Guidelines provide default emission factors for different fuels³.

Tier 1 calculations for non-CO₂ GHGs (CH₄ and N₂O) are very similar, they use the same activity data, but different values of the emission factor, which are also provided in the 2006 IPCC GLs⁴.

Higher methodological tiers require more detailed activity data split by different environmental conditions and technology used and the relevant country-specific emission factors. For non-CO₂ emissions, additional data on vehicle-km traveled are also necessary.

Currently for Vanuatu, due to resource constraints and data availability, Tier 1 is used for all transport categories.

³ E.g., Table 3.2.1, <u>https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_3_Ch3_Mobile_Combustion.pdf</u>

⁴ E.g., Table 3.2.2, <u>https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_3_Ch3_Mobile_Combustion.pdf</u>

1.2 REFERENCE MANUAL

1.2.1A. TRANSPORT DATA COLLECTION FOR THE SECTORAL APPROACH

Table 1: below shows the Tier 1 activity data (AD) requirement to estimate CO2, N2O, and CH4 from the three transport activities, public road transport, domestic aviation, and domestic waterborne navigation

Fuel Type	Diesel oil, motor gasoline, petrol etc.
Fuel consumption by fuel type using national data or, as an alternative, IEA, or UN international data sources	Terajoules, TJ
Default CO₂ emission factor (Refer to Annex, Table 2.2.1.1) This is equal to the carbon content of the fuel multiplied by $44/12^5$.	kg/TJ
ESTIMATING N ₂ O AND CH ₄ EMISSION FROM ROAD TRANSPORT.	
Fuel Type	Diesel oil, motor gasoline, petrol etc.
	Kilometer, Km
Distance Travelled by vehicle type on different road type.	/
Distance Travelled by vehicle type on different road type. Fuel consumption by fuel type using national data or, as an alternative, IEA, or UN international data sources	Terajoules, TJ
Fuel consumption by fuel type using national data or, as an alternative,	Terajoules, TJ kg/TJ

⁵ 44/12 is C/CO₂ ratio

ESTIMATING CO ₂ EMISSION FROM DOMESTIC AVIATION	
Default CO₂ emission factor (See Annex Table 2.2.1.6a)	kg/TJ
Fuel Consumption	Terajoules, TJ
ESTIMATING N ₂ O AND CH ₄ EMISSION FROM DOMESTIC AVIATION	
Default N₂O and CH₄ emission factor (See Annex Table 2.2.1.6b)	kg/TJ
Fuel Consumption	Terajoules, TJ
(See 2006 IPCC Guideline, Vol 2, Chap 3 Mobile Combustion for section 3.6.1.1 Choice Method, Equation 3.6.1)	of
DOMESTIC WATERBORNE NAVIGATIO	ON
ESTIMATING CO2 EMISSION FROM DOMESTIC WATERBORNE NAVIGATION	
Default CO ₂ emission factor (See Annex Table 2.2.1.7a)	kg/TJ
Fuel Consumption	Terajoules, TJ
<i>ESTIMATING N₂O AND CH₄ EMISSION FROM DOMESTIC WATERBORNE NAVIGATION</i>	
Default CO ₂ emission factor (See Annex Table 2.2.1.7b)	kg/TJ
Fuel Consumption	Terajoules, TJ
Note that the fuel consumption data and emission factors in the Tier 1 method are fuel-type-specific and should be applied to the corresponding activity data (e.g. gas/diesel oil used for domestic navigation). (See 2006 IPCC Guidelines, Chapter 3 "Mobile Combustion", Section 3.5.1.1 for Equatio 3.5.1)	

1.2.1B. REFERNCE APPROACH DATA COLLECTION

A top-down approach to estimate CO₂ emissions from combustion of fossil fuels using national fuel supply data. The data requirement are as follows:

- The amounts of primary fuels produced (production of secondary fuels and fuel products is not included)
- ✤ The amounts of primary and secondary fuels imported.
- * The amounts of primary and secondary fuels **exported**.
- ✤ The amounts of primary and secondary fuels used in international bunkers.
- * The net increases or decreases in stocks (**stock change**) of primary and secondary fuels.
- Amount of fuels (carbon) excluded from the energy use.
- ◆ Basic parameters for each fuel (could be default values from the IPCC GLs): (*Refer to Annex, Table 2.2.1.3 Table 2.2.1.5*)
 - Carbon content
 - Oxidation factor
 - Calorific value

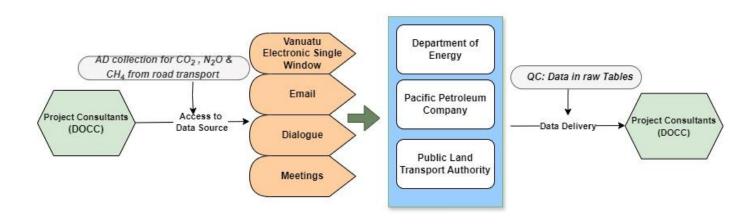
1.2.2. DATA SOURCES (Departments, Stakeholders)

The country's specific data can be collected from the following departments/stakeholders/organization:

- Department of Energy
- Pacific (Pacific Petroleum Company)
- Public Land Transport Authority (PLTA)
- Department of Climate Change (DOCC)

Once a data set is selected, a more detailed formal specification of data should be created. A clear clarity of data requirements will allow data that is requested from the different departments/organizations to be delivered upon expectation (Goodwin, Woodfield, Ibnoaf, Koch, & Yan, 2006). The specification should include details such as:

• Definition of the data set (E.g. time series, sectors and sub-sector detail, national coverage, requirements for uncertainty data, emission factors and/or activity data units).



- The format (e.g., spreadsheet) and structure (e.g., what different tables are needed and their structure) of the data set,
- Description of any assumptions made regarding national coverage, the sectors included, representative year, technology/management level, and emission factors or uncertainty parameters.
- Identification of the routines and timescales for data collection activities (e.g., how often is the data set updated and what elements are updated).
- Reference to documentation and QA/QC procedures.
- Contact name and department/ organization.
- Date of availability.

Flow chart 1.2.2.1: Details of access to data sources by the Department of Climate Change (DOCC)

Department/ Organization	Roles and Responsibility	Dates	Relevant Governing Arrangement	Contact Person	Comments
Department of Energy	To provide relevant data and information on CO ₂ , CH ₄ and N ₂ O emission from road transport. To deliver activity data on imports, exports, international bunkers, and stock change.	First week of April– First week of May every year	A Memorandum of understanding or Right to Information (RTI) can be provided between Department of energy and DOCC	Serah T Chilia Email: <u>schilia@vanuatu.</u> <u>gov.vu</u>	For significant information and data requirements, DOCC needs to send a prompt letter to the Department of Energy two months prior. A follow-up email or call is crucial as well.
Pacific Petroleum Company	To provide relevant data on the quantity of different fuel type distributed or sold for public road transport, domestic aviation, and domestic waterborne navigation purposes. This data is crucial for	First week of April– First week of May every year	A Memorandum of understanding or Right to Information (RTI) can be provided between Pacific Petroleum Company and DOCC	Pacific Petroleum Tel: (+678) 22901	For significant information and data collection, DOCC needs to send a prompt letter to Pacific Petroleum two months prior. A follow-up email or call is crucial as well.

 Table 2: Detailed Information of Collecting Activity Data from Sources.

Public Land Transport Authority (PLTA)	estimating emissions based on fuel consumption. To provide relevant data and information on the quantity of vehicle types currently operating, vehicle fleets, average annual distance travelled per vehicle, km, to estimate ghg emission.	First week of April– First week of May every year	A Memorandum of understanding or Right to Information (RTI) can be provided between PLTA and DOCC	Lisa Malwosi (Shefa Permit Officer Public Land Transport Authority) Port Vila, Tel: (+678) 23100 Email: <u>Imalwosi@plta.c</u> <u>om.vu</u>	For significant information and data collection, DOCC needs to send a prompt letter to PLTA two months prior. A follow-up email or call is crucial as well.
Department of Climate Change (DOCC)	DOCC is responsible to send a formal letter requesting relevant data and information on CO ₂ , CH ₄ and N ₂ O emission on public road transport, domestic aviation, and domestic waterborne navigation.	February – March every year	Provide a Memorandum of understanding or Right to Information (RTI) to the Department of Energy, PLTA and Pacific Petroleum.	Name: Nelson Kalo (Director of Climate Change) Email: <u>nekalo@vanuatu</u> .gov.vu	DOCC is responsible for doing a follow- up to the departments/co mpanies for the required data to be delivered upon schedule.

1.2.3. DATA ASSUMPTIONS ROAD TRANSPORT

The following assumptions are made where data is unavailable for greenhouse gas emissions on road transport focusing on Tier 1 approach.

- ✤ Vanuatu is using Net Calorific Value (NCV) basis,
 - \circ Calorific value (NCV), diesel = 43.00 (TJ/Gg) 2006 IPCC default
 - \circ Calorific value (NCV), petrol = 44.3 (TJ/Gg) 2006 IPCC default
- ◆ In Tier 1, all carbon in the fuel is fully oxidized and converted into carbon dioxide, that is, carbon oxidation factor (COF) = 1.
- Uncertainty information on fuel combustion statistics or energy balance can be obtained from national data. If no uncertainty data is available, the recommended default uncertainty range for fossil fuel combustion data should be assumed to be **plus or minus 5 percent**.

VEHICLE DATA ASSUMPTIONS

Apart from Liquefied petroleum gas (LPG) and ethanol vehicles, the default values are determined using the sources referenced in the Energy Volume Introduction chapter. These include NCV values from the sources mentioned, density values from the U.S. Energy Information Administration, and assumed typical fuel consumption rates:

- \succ 10 km/l for gasoline vehicles
- \succ 5 km/l for diesel vehicles
- > 9 km/l for natural gas vehicles (considered equivalent to gasoline vehicles

If specific actual fuel economy figures are available, it is recommended to utilize them along with total fuel consumption data to estimate total distance traveled, which should then be multiplied by Tier 2 emission factors for N₂O and CH_4 (See 2006 IPCC Guidelines, Chapter 3 "Mobile Combustion", Table 3.2.2).

REFERENCE APPROACH

The Reference Approach assumes that once carbon is brought into a national economy as fuel, it is either released into the atmosphere as a greenhouse gas, or it is diverted (e.g., in increases of fuel stocks, stored in products, left unutilized in ash) and does not insert into the atmosphere as a greenhouse gas. (See 2006 IPCC Guidelines Volume 2, Chapter 1, Sector 1.6.1 on Reference Approach)

1.3 CALCULATING GREENHOUSE GAS EMISSION

1.3.1 USING TIER 1 APPROACH WITH SCARES DATA ON FUEL SALES.

- The accurate values for fuel sales by each type of fuel for each type of transport are not available in Vanuatu
- However, some data are available (or elucidated from the expert judgment) on the vehicle counts (VNSO), the approximate annual distance traveled, and the fuel consumption per km traveled (from vehicle specification)
- Therefore, an approximate estimate of fuel consumption by each type of vehicles could be prepared and used for a rough estimate of GHG emissions in the sectoral approach:

Fuel used (TJ) = km traveled x fuel consumption (L)/1000 x fuel density (kg/m³) x NCV(TJ/Gg) / 1,000,000

CALCULATING THE TOTAL FUEL CONSUMPTION BY VEHICLES USING THE Excel file D1_S4a_Vehicle emission exercise_T1

1. Open the Excel file D1_S4a_Vehicle emission exercise_T1

1.1 Click on the sheet at the bottom of the page entitled "Vehicle counts – summary" (see illustration below).

IJ] ∽ ⊂ ~ ≂ D1_S4a_Ve	hicle emission exercise_T1 (1) - Excel Dearch			Sign in	Ŧ	- 0	×
File	e Home Insert Page Layo	ut Formulas Data Review View Help					ß	Share
Pas Clip		→ A [^] A [×] = = = 8 ⁰ / ₂ × 2 ⁰ / ₂ Wrap Text 2 ⁰ × A × = = = = = = = E E Merge & Center × S Alignment F N	6 9 .00	ormat	∑ AutoSum ↓ Fill ~ � Clear ~	Z ४ Sort &	Find & Select ~	~
C11	\bullet : \times \checkmark f_x							~
	A B	С	D	E	F	G	н	•
1		Goal	Note					
2	1 Sort & categorize the data set	 All categories are written as time series, each type of vehicles one under another with one set of years above, nice and tidy 						
3		2. All data are sorted by IPCC category and by fuel type	Buses and heavy-duty tricks belong to the same IPCC category					
4		3. All irrelevant/redundant information titles are removed						
5		 All formatting is consistent across the entire data set, minimalistic and helping to understand the data 						
6	2 Check quantitative assumptions	 Are they using consistent quantities? If not, adjust the quantitie accordingly 	5					
		2. Are they using metric units? If not, use Google search and	Please note that 2006 IPCC GLs uses metric system (kg, Gg or					
7		perform appropriate unit conversions	kt, m ³ , litres TJ; NOT miles, gallons, or kTOe)					
8		 Identify the data transformation needed according to the assumptions 						
9								
10								
11								
12			-					
13								
14								
15		Click on the "vehicle						
16		counts ~ summary " sheet						-
4	Read me vehicle con	unts - summary Vehicle registration_VNSO Assumptions & fu	el properties Data cleansing Data transformation (+	:	•		•
Read	у						-	+ 100%

1.2 Find the number for each type of vehicle present in the specific year containing the data as seen below in the table

IJ	<u>ا</u> ا	୯	D1_S4a_Veh	icle emission exercise	_T1 (1) - Exc	cel	𝒫 Search					Sig	jn in 🖪	-	0 X
File	e Ho	me Ins	sert Page Layou	ıt Formulas	Data R	keview View	w Help								🖻 Share
Pas	te 🗳	Verdana B I	⊻ - ⊞ - ◊		= €	→= 🗄 Merge	e & Center 🗸	Number ~ \$ ~ % 9 500 300 300 300 300 300 300 300 300 300	Conditional For Formatting ~ Ta	ible ~ Styles ~	Insert Delete	Format	ill ~ S lear ~ Fi	AZY O fort & Find & ilter ~ Select ~	·
Clip	board		Font	Γ <u>ν</u>	AI	lignment	۲	Number	Style	es	Cells		Editin	g	· ^
D4		•	$\times \checkmark f_x$												~
	А	В	с	DE	F	G	н	1	L L		К	L	М	N	0
1	Measure Names	type •		Measur Names	type	number vehicles us diesel (ga diesel oi	of sing as/								
-	2019	Bus	131	2019	Bus	11,103.00	Table showing t	the							
-	2018	Bus	133	2018	Bus	10,811.00	number of vehi								
-	2017	Bus	136	2017	Bus	10,031.00	diesel (gas/ die	sel oil)							
5	2016	Bus	139	2016	Bus	9,495.00									
•	2015	Bus	144	2015	Bus	8,865.00									
· ·	2014	Bus	142	2014	Bus	8,624.00									
•	2013	Bus	142	2013	Bus	8,389.00									
3	2012	Bus	146	2012	Bus	8,118.00									
10	2011	Bus	155	2011 2010	Bus Bus	7,971.00 7,835.00									
	2010	Bus	105	2010	Bus	7,662.00									
12	2009	Bus	175	2009	Bus	7,272.00									
10	2008	Bus	186	2008	Bus	6,766.00									
14	2006	Bus	189	2007	Bus	6,259.00									
	2005	Bus	197	2005	Bus	5,953.00									
16 17		Bus	200	2005	Bus	5,580.00									
	2003	Bus	205	2004	Bus	5,199.00									
18 19		Bus	219	2003	Bus	4,792.00									
20		Bus	231	2002	Bus	4,341.00									
20		Bug	120	2001	Rus	4.015.00	_								
	×.	Read	me vehicle cou	nts - summary	Vehicle reg	istration_VNSC	Assumptio	ons & fuel properties	Data cleansing	Data transf	ormation	+			Þ

TICAT Initiative for Climate Action Transparency

1.3 Click on the sheet entitled "Vehicle registrations"

8 9×		D1_34a_ven	icle emission exerc	:ise_T1 (1) - Ex	cel 🔎	Search			l _		Sig	yn in 🖬		ð	×
File Ho	me Ins	ert Page Layou	it Formulas	Data	Review View	Help								🖻 Sha	ire
Paste 4	ця В 1	U ~ ⊞ ~ ⊘ Font	• A • A • =		 ✓ ab Wrap Text →Ξ ➡ Merge & O Alignment 	· · · · ·	Number Variation of the second sec	Conditional Form Formatting ~ Tab	ole ~ Styles ~	Insert Delete Cells	Format	ill ~	AZY Sort & Find Filter ~ Select		~
										12				0	
A Measure Names	type	number of vehicles using petrol (motor- gasoline)	D E Meas Nam	es type	vehicles using diesel (gas/ diesel oil)		I	J		К	L	M	N	0	
2 2019	Bus	131	2019	Bus	11,103.00										
3 2018	Bus	133	2018	Bus	10,811.00										-1
2017	Bus	136	2017	Bus	10,031.00										_
2016	Bus	139	2016	Bus	9,495.00										_
2015 2014	Bus	144 142	2015	Bus	8,865.00 8,624.00										-
2014	Bus Bus	142	2014	Bus	8,389.00										-
2013	Bus	146	2013	Bus	8,118.00										-
2012	Bus	155	2012	Bus	7,971.00										-
2010		163	2011	Bus	7,835.00										
	Bus	175	2010	Bus	7,662.00										
2009 2008	Bus	182	2008	Bus	7,272.00										-
2007	Bus	186	2000	Bus	6.766.00										+
2006	Bus	189	2005	Bus	.00										+
5 2005	Bus	197	2005	Bus	.00										+
7 2004	Bus	200	2004	Bus	.00										
3 2003	Bus	205	2003	Bus											+
2 002	Bus	219	2002	Bus		on the sheet									+
2001	Bus	231	2001	Bus		ed "Vehicle ration_VNSO"									
	Rus	-120	2000	Rug	4 15 00					1					
	Read r	ne vehicle cour	nts - summary	Vehicle reg	gistration_VNSO	Assumptions &	fuel properties	Data cleansing	Data transf	ormation	÷	E 4			Þ

1.4 Enter the number of total vehicle type into the specific year as recorded. (See illustration below)

IJ	9 • (°	- ⇒ D1_	S4a_Vehicle emission e	exercise_T1 (1) - Excel	P	Search			l			Sign in	团 -	οx
File	Home	Insert Pag	e Layout 🛛 Formul	as Data Reviev	v View	Help								ය Share
Past		alibri · · · · · · · · · · · · · · · · · · ·			란 Wrap Text 臣 Merge & C ent	enter ~ General \$ ~ % 9 Fa Number	ער 0.00 00 ÷0 ער	Conditional Form Formatting ~ Ta Style	ble ~ Styles ~	Insert Dele Cell	te Format	∑ AutoSum 、 ↓ Fill ~ ♦ Clear ~ Ed	Sort & Find & Filter ~ Select ~	
F13	Ŧ	: × 🗸	f _x											٣
	А	В	С	D	E	F	G	Н	I	J	К	L	М	N 🔺
3	Table 9 Pr	ivate Motor V	ehicle Registrat	ions in Port Vila a	nd Luganvi	ille			· · · ·	Newly	registe	red vehic	les 2018	-2022
4	Year	Motorcars (cars)		Trucks (heavy- duty trucks)	Buses	Motorcycle		800						
5	2018	748	427	184	248	46		600					\sim	
6	2019	758	267	104	74	42		500						
7	2020	<mark>61</mark> 6	208	66	59	13		500						
8	2021	687	267	95	75	15		400						
9	2022	202	56	22	12	6		300						
10														
11				ble showing the umber of vehicle typ	•			200						
12				uniper of vehicle typ			1	100						
13							•		_					
14 15								0	2018		2019		2020	
16														
10														
1	· · · 1	Read me 🕴 vehi	cle counts - summar	y Vehicle registrat	tion_VNSO	Assumptions & fuel pro	perties	Data cleansing	Data transfo	ormation	(+)	:		•

24 | P a g e

FICAT Initiative for Climate Action Transparency

1.5 Click on the sheet entitled "Data Cleansing"

B	9. G	- ⇒ D1_	S4a_Vehicle emission e	exercise_T1 (1) - Excel	Q	Search					Sign in 🖬 —	o x
File	Home	Insert Pag	e Layout 🛛 Formul	las Data Reviev	v View	Help						🖻 Share
Past		alibri B I <u>U</u> → I III Font	~ <u></u> ~ <u>A</u> ~		ἐऺॖॖॢ₩rap Text 臣 Merge & C ent		✓ .00 .00 .00 →0 .01	Conditional Form Formatting ~ Tab	nat as Cell Insert De Ile Y Styles Y Y	lete Format	AutoSum ~ A Fill ~ Z Clear ~ Filter ~ Se Editing	
F5	•	: × 🗸	<i>f</i> _x 46									~
	А	В	С	D	E	F	G	Н	I J	К	L M	N 🔺
3	Table 9 Pr	ivate Motor V	ehicle Registrat	ions in Port Vila a	nd Luganvi	ille			Newl	y registere	ed vehicles 20	18-2022
4	Year	Motorcars (cars)		Trucks (heavy- duty trucks)	Buses	Motorcycle		800				
5	2018	748	427	184	248	46		600				
6	2019	758	267	104	74	42	Ι	500				
7	2020	616	208	66	59	13		500				
8	2021	687		95	75	15		400				
9	2022	202	56	22	12	6		300				
10												
11 12								200				
12												
14												
15							•		2018	2019	20	20
16								Click or	the sheet entitled			
17								"Data C	leansing "			•
		Read me vehi	cle counts - summar	y Vehicle registrat	ion_VNSO	Assumptions & fuel pro	perties	Data cleansing	Data transformation	+	: •	
Ready	1											+ 130%

1.6 Using the assumption that half of the total vehicle type uses petrol and the other half uses gas/diesel, further divide the vehicles into the types of fuels used. (See illustration below)

⊟ 9·~~ -	D1_S4	4a_Vehicle emissio	n exercise_T1 (1) - Excel		Search								Sign	in E	Ð —	ð	×
ile <mark>Home</mark> Inser	t Page	Layout Form	nulas Data	Review	View	Help											🖻 Sha	are
Can X aste v v v v verdana B I ⊥ lipboard Is	• U • ⊞ • Font	8 ~ A^ A` . <u>0</u> ~ <u>A</u> ~	= = = = = =		Wrap Text		umber • % 9 Number	v 00. 0; 0. 0; 0. 0;	Conditiona Formatting			Insert v	Delete Format	😺 Fill		AZY Sort & Find Filter ~ Select		
		_		-		LE1	Number	121		Styles			Cells	1	Euli	ing		ĺ
3 • : ×	(√ f:	* ='Vehicle	registration_	VNSO'!B5*0.	5				-									
Α	В	С	D	E	F	G	Н	1		K	L	М	Ν	0	Р	Q	R	
Enter the origina correct IPCC (and		-			ategorize k	by the		-		"Vehicle	lue extrac registrati	ion_VNS	0" x					
Vehicle type	IPCC category	Fuel type	2018	2019	2020	2021							the specific 1d 1/2 uses					
Light passenger (Cars)	1.A.3.b.i	motor gasoline (petrol)	374.00			Enter the	value of pe	trol		gas/dies								
(Cars)	1.A.3.b.i	Diesel (gas/diesel oil)				and gas/d the cells a	iesel oil int ccordingly	to										
	1.A.3.b.iii	motor gasoline (petrol)		Enter the s	ame value as	that of												
	1.A.3.b.iii	Diesel (gas/diesel oil)		the vehicle	to the cell a are petrol a	nd the												
	1.A.3.b.iii	motor gasoline (petrol)		other 1/2	are gas/dies	el oil												
Heavy truck	1.A.3.b.iii	Diesel (gas/diesel oil)																
Light duty track	1.A.3.b.ii	motor gasoline (petrol)																
Light duty track	1.A.3.b.ii	Diesel (gas/diesel oil)																
Motorcycle	1.A.3.b.iv	motor gasoline (petrol)																
Motorcycle	1.A.3.b.iv	Diesel																
 ✓ → Read me 	e vehicle	e counts - summ	ary Vehi	cle registratio	on_VNSO	Assumption	is & fuel pro	perties	Data clean	ising [Data transf	ormation	+					Þ

1.7 Find the Estimated average fuel consumption per vehicle (L), by using the equation (Consumption value liters per 100km X Average annual distance travelled per vehicle, km)/100. (See illustration below)

File	Home Insert Page	Layout Formulas Data	Review View Help							🖻 Share
ClipI		$\begin{array}{c c} 11 & A^{\wedge} & A^{\vee} \\ \hline \\ $	 	Number ▼ \$ ~ % 9 500 - 300 Number 500 - 300	Conditional Form	ole ~ Styles ~	nsert Delete Format Cells	∑ AutoSum ↓ Fill ~ ♦ Clear ~	▲ Z Y Sort & Find & Filter ~ Select ~ Editing	
D4	▼ : × ✓ f	£∞ =B4*C4/100								
	А	В	С	D	E	I	F	G		Н
1	Quantitative a	ssumptions								
2	1. Estimate annual	average fuel consu	mption as a volum	е						
3	Vehicle type	Consumption value, litres per 100 km	Average annual distance travelled per vehicle, km	Estimated average fuel consumption per vehicle (L)		Es Es	ble showing the timated average f			
4	bus	32.6	240,963.8	78,554.2		со	nsumed per vehi	cle (L)		
5	car	9.4	21,721.5	2,041.8	Estimate	d average fuel co	onsumption per v	ehicle (L)		
6	heavy-duty truck	33.4	70,228.0	23,455.0			Average annua			
7	light-duty truck	9.4	100,966.4	9,498.9	(Liters po	er 100 km)	travelled per ve	<u>ehicle, km</u>		
8	motorcycle	4.4	2,896.2	127.4		100				
	2. Convert annual o factor to convert lit			_	alorific val	ue for each	fuel type);	remembe	er to apply a	ı scal
	Vehicle type	Fuel type	Estimated average fuel consumption per	Estimated average fuel consumption	Density	Estimated a consumption	verage fuel per vehicle	NCV (TJ/Gg)	Estimated consumpti	
-	Read me vehicle	e counts - summary Vehicle	registration_VNSO Assum	ptions & fuel properties	Data cleansing	Data transform	ation (+)	÷	•	Þ
Ready	1									- + 1309

FICAT Initiative for Climate Action Transparency

1.8 Enter the values from the Table 1 in sheet "Data Transforamation" into the Table 2 under the Tab "Estimated average fuel consumption per vehicle (L) (See illustration below).

l	∃ 9·~~ -	D1_S4a_Vehicle emi	ssion exercise_T1 (1) - Exe	cel 🔎 S	earch							Sign in		ı —	٥	×
Fi	le <mark>Home</mark> Insert	Page Layout F	ormulas Data F	Review View H	Help										டி S	hare
	Calibri La Calibri Iste de ipboard La	- 11 - A^ . - I	· = = = =	→ eb Wrap Text → E Merge & Cen lignment		mber ~ ~ % 9 50 30 Number ⊡	Conditional Formatting		nat as Cell Insert Ie ~ Styles ~ ~	t Delete Cells	Format	∑ Auto! ↓ Fill ~ ∳ Clear	:	AZZ Zort & Fin Filter ~ Sel		~
C1	3 • : ×	<i>√ f</i> _x =D4														~
	Α	в	С	D	E	F	G		н		1	J		к	L	
1	Quantitative a	ssumptions			_										_	
2	1. Estimate annual		sumption as a volu	me												
3	Vehicle type	Consumption value, litres per 100 km	Average annual distance travelled per vehicle, km	Estimated average fuel consumption per vehicle (L)												
	bus	32.6	240,963.8	78,554.2												
	car	9.4	21,721.5	2,041.8												
	heavy-duty truck	33.4	70,228.0	23,455.0												
	light-duty truck	9.4	100,966.4	9,498.9												
	motorcycle	4.4	2,896.2	127.4												
9 10	2. Convert annual of scaling factor to co	onvert litres ->m ³ (0.001), and kg ->0	Gg (1,000,000)												
11	venicie type	Fuel type	Estimated average fuel consumption per vehicle (L)	Estimated average fuel consumption per vehicle (m ³)	Density (kg/m3)	Estimated average I consumption per vel (kg)		I/Gg)	Estimated average f consumption per vehic							
12				volume (m3) = volume (L)/1000		mass(kg) = volume (m³) x dens (kg/m³)	ity		energy (TJ) = mass(kg) x NCV (TJ/ /1,000,000	Gg)						
		petrol (motor gasoline)	78,554.2	78.554	737	57,89	4.454	44.3		2.6						
	bus	diesel	78,554.2	78.554	835	65,59		43		2.8						
15		petrol (motor gasoline)	2,041.8		737		4.822	44.3		0.1						-
	Read me	vehicle counts - sur		- 1		& fuel properties	Data cleans	ing	Data transformation	on	(+)					Þ
Rea	dy			3 enter the value o							=	Ξ	巴		+	95%

1.9 Convert the value of fuel consumption in litres to m³ by using the equation:

Estimated average Fuel consumption per vehicle $(m^3) = Volume (L) / 1000$.

Take the values from "volume (L)" under the cell C column and divide by 1000 to get the value for m³ under the cell D column (See illustration below)

E 9· °	D1_S4a_Vehic	cle emission exercise_T	1 (1) - Excel	, Р s	earch					Sign in	• -	- o x
File Home Ins	ert Page Layout	Formulas D	ata Review	View H	Help							🖻 Share
Paste V Clipboard S	- 11 - ↓ U - ↓ ⊞ - ↓ _			Wrap Text Merge & Cen	ter ~ % 9	¥ 00. 00 0. 00	Conditional Format as Co Formatting ~ Table ~ Style Styles	ell Insert Del	lete Format	∑ AutoSun	n × A Z Sort & Filter × S	
D13 * :	× √ f _x =	C13/1000										~
scaling factor to co		mption to energy	23,455.0 9,498.9 127.4 Excel inp (use density and	ut	F value for each fuel typ	G De); remen	H	t I	K	L	M	N
10 Vehicle type	Fuel type	Estimated average fuel consumption per vehicle (L)	Estimated average fuel consumption per vehicle (m ³) volume (m3) = volume (L)/1000	Density (kg/m3) EQUA	consumption per vehicle (kg)	NCV (TJ/Gg)	Estimated average fuel consumption per vehicle [TJ] energy [TJ] = mass[kg] * NCY [TJ/Gg] /1,000,000					
13 bus	etrol (motor gasoline	78,554.2	78.554	737	57,894.454	44.3	2.6					
14 bus	diesel	78,554.2	78.554	835	65,592.767	4						
15 car	etrol (motor gasoline	2,041.8	2.042	737	1,504.822	Use the va	alues from "Estimated					
16 car	diesel	2,041.8	2.042				el consumption per					
17 heavy-duty truck	etrol (motor gasoline	23,455.0	23.455		2	vehicle (L) and divide by 1000 to					
18 heavy-duty truck	diesel	23,455.0	23.455	835			Estimated average fuel					
19 light-duty truck	etrol (motor gasoline	9,498.9	9.499	737	7,000.700	consumpt	ion per vehicle(m3_					
20 light-duty truck	diesel	9,498.9	9.499	835	7,931.594	43	0.3					
21 motorcycle	etrol (motor gasoline	127.4	0.127	737	93.918	44.3	0.0					
22 motorcycle	diesel	127.4	0.127	835	106.406	43	0.0					
23 5. Using cleansed	diesel and	I netrol for each ve		he time-se	annual fuel consumpt ries Assumptions & fuel pro		Data cleansing Data tr	ansformation	+		4	
1	venicie count		incle registration_	1130	Assumptions of rule pro	perices	Data ti	anoronnacion	-		1	
Ready												++ 84%

2 Convert the value Fuel consumption (m^3) to (Kg) by using th equation. Estimated everage fuel consumption per vehicle $(Kg) = Velume (m^3) \times Density (m^3)$

Estimated average fuel consumption per vehicle (Kg) = Volume (m^3) x Density (Kg/ m^3)

Multiply the values from column D and E to get the value of Estimated average fuel consumption per vehicle (Kg) (See illustration below)

□ り・C・ →	D1_S4a_Vehic	le emission exercise_T	l (1) - Excel	, Р s	earch						Sign in	a –	o X	×
File Home In:	sert Page Layout	Formulas D	ata Review	View H	lelp								🖻 Share	е
Paste 3	⊻ - ⊞ - 💁	• <u>A</u> • <u></u> = = :	≡∣≘ ≞ ඕ №	Vrap Text Aerge & Cen		~ 00. 0; 0€ 00.	Conditional Form Formatting ~ Tab	ole ~ Styles ~	~	elete Format	∑ AutoSur ↓ Fill ~ ♦ Clear ~	ZƳ, Sort&F Filter∽Se		
Clipboard 🕞	Font	۲ <u>م</u>	Alignment		Number آيتا	ا _ل يا	Styles	S		ells		Editing		^
F13 🔻 :	$\times \checkmark f_x =$	D13*E13												~
A 5 car 6 heavy-duty truck 7 light-duty truck 8 motorcycle	B 9.4 33.4 9.4 4.4		D 2,041.8 23,455.0 9,498.9 127.4	E	F	G	Н	1	l	K	L	М	N	
	average fuel consu onvert litres ->m ³ Fuel type	(0.001), and kg -> Estimated average	Gg (1,000,000) Estimated average	calorific v	alue for each fuel typ Estimated average fuel	NCV (TJ/Gg)	Estimated averag							
11		fuel consumption per vehicle (L)	fuel consumption per vehicle (m³) volume (m3) = volume (L)/1000	(kg/m3)	consumption per vehicle (kg) mass(kg) = volume (m³) # density < (ka/m³)	EQUAT	consumption per ((TJ) energy (TJ) = (kg) x NCV (T /1,000,000	=						
13 bus	etrol (motor gasoline	78,554.2	78.554	737	57,894.454	44.3		2.6						
14 bus	diesel	78,554.2	78.554	835	65,592.767	43		2.8						
15 car	etrol (motor gasoline	2,041.8	2.042	737	1,504.822	44.3					_			
16 car	diesel	2,041.8	2.042	835	1,704.921					rom column				
17 heavy-duty truck	etrol (motor gasoline	23,455.0	23.455	737	17,286.362					imated avera				
18 heavy-duty truck	diesel	23,455.0	23.455	835	19,584.955			fuel con	sumption j	per vehicle (Kg)			
19 light-duty truck	etrol (motor gasoline	9,498.9	9.499	737	7,000.700	44.3								
20 light-duty truck	diesel	9,498.9	9.499	835	7,931.594	43		0.3						
21 motorcycle	etrol (motor gasoline	127.4	0.127	737	93.918	44.3		0.0						
22 motorcycle	diesel	127.4	0.127	835	106.406	43		0.0						
23 5. Using cleansed		n recalculations in netrol for each ve			annual fuel consump ries	tion for								-
Read		1	hicle registration_V	1	Assumptions & fuel pro	perties	Data cleansing	Data transf	ormation	(+)		4	•	,

2.2 Convert the value of vehicle consumption (Kg) to (TJ) using the equation:

Estimated average fuel consumption per vehicle = Mass (Kg) X NCV (TJ/Gg) / 1,000,000

Under the cell H (Estimation average fuel consumption per vehicle (TJ)), multiply values from column F and G and divide by

1,000,000 (See illustration below)

回 ら、 G・ ÷	D1_S4a_Vehic	le emission exercise_T1	(1) - Excel	, P s	arch		Sign	in 🖻 – 🗗 X
File Home Ins	sert Page Layout	Formulas Da	ita Review	View H	elp			🖻 Share
Calibri Paste v v v Clipboard s	- 11 - <u>∪</u> - Font			Vrap Text Nerge & Cent	er ~ \$ ~ % 9	v 00. 0,→ 0,← 00.	Conditional Format as Cell Formatting ~ Table ~ Styles ~ Cells ↓ Cells ↓ Cells ↓ Cells	Sort & Find &
H13 • :	× √ fx =	(F13*G13)/1000000						
scaling factor to co	B 9.4 4.4 average fuel consu	C 100,966 2,895. mption to energy		E calorific v	F alue for each fuel ty	G		L M N
10 Vehicle type	Fuel type	Estimated average fuel consumption per vehicle (L)	Estimated average fuel consumption per vehicle (m ³) volume (m3) = volume (L)/1000	Density (kg/m3)	Estimated average fuel consumption per vehicle (kg) mass(kg) = volume (m ³) z density (ka/m ³)	NCV (TJ/Gg)	Estimated average fuel consumption per vehicle (TJ) energy (IJ) = mass[kg] x MCY (TJ/Gg) < P(J00,000 H) (000,000	
13 bus	etrol (motor gasoline	78,554.2	78.554	737	57,894.454	44.3	2.6	
14 bus	diesel	78,554.2	78.554	835	65,592.767	43	2.8	
15 car	etrol (motor gasoline	2,041.8	2.042	737	1,504.822		0.1	
16 car	diesel	2,041.8	2.042	835	1,704.921	43	0.1 Multiply val	
17 heavy-duty truck	etrol (motor gasoline	23,455.0	23.455	737	17,286.362	44.3	0.8 Column F ar	
18 heavy-duty truck	diesel	23,455.0	23.455	835	19,584.955		0.8 divide by 1,0	000,000
19 light-duty truck	etrol (motor gasoline	9,498.9	9.499	737	7,000.700		0.3	
20 light-duty truck	diesel	9,498.9	9.499	835	7,931.594		0.3	
21 motorcycle	etrol (motor gasoline	127.4	0.127	737	93.918		0.0	
22 motorcycle	diesel	127.4	0.127	835	106.406	43	0.0	
 23 5. Using cleansed 24 		n recalculations in petrol for each ve			annual fuel consump ies	tion for		
			2010	2010	2020	2021		·
Read	me vehicle count	s - summary Ve	hicle registration_\	/NSO	Assumptions & fuel pro	perties	Data cleansing Data transformation (+)	E E E
Ready								<u> </u>

2.3 In table 3 in sheet "Data transformation" under the year tab, Cell D, calculate the national annual fuel consumption for diesel and petrol for each vehicle type for the time-series using the equation:

National annual fuel consumption for diesel and petrol for each vehicle type = Estimated average fuel consumption per vehicle (TJ) X Number of specific vehicle (See illustration below).

File Home Ins	ert Page Lay	out Formulas D	ata Review	View Help											🖻 Share
Paste V Clipboard				/rap Text lerge & Center	✓ Number ✓ \$ ~ % 9	v 00. 0.→ 0.← 00.	Formatting ~	Format as Cel Table ~ Styles Styles	l Insert	Delete Č	Format ~	∑ AutoSi ↓ Fill ~ ∳ Clear ~	Z Soi	∀ t& Find & er ∽ Select ∿	
capbourd (a)	T ONL				an Number	121		Styles	1	Cells		1	cutting		
D27 🔻 :	$\times \checkmark f_x$	=\$H\$15*'Data cleansi	ing'!D3												~
Δ Δ	В	с	D	Excel Input	F	G	н		1.1	1	к	1.1	м	N	
5. Using cleansed		ts in recalculations in and petrol for each ve	hicle type	e time-series											
25			2018	2019	2020	2021									
6 Vehicle type	IPCC category	Fuel type					1								
	1.A.3.b.i	motor gasoline (petro	24.9	0.0	0.0	0.0									
	1.A.3.b.i	Diesel (gas/diesel oi	0.0	0.0	0.0	0.0									
	1.A.3.b.iii	motor gasoline (petro		0		ne values									
	1.A.3.b.iii	Diesel (gas/diesel oi	0.0			ing Data									
1 Heavy truck	1.A.3.b.iii	motor gasoline (petro					e TJ of fuel								
2 Heavy truck	1.A.3.b.iii	Diesel (gas/diesel oi	0.0	0.0	consum	ed									
3 Light duty track	1.A.3.b.ii	motor gasoline (petro		0.0			1								
	1.A.3.b.ii	Diesel (gas/diesel oi	0.0	0.0	0.0	0.0	4								
5 Motorcycle	1.A.3.b.iv	motor gasoline (petro		0.0	0.0	0.0									
6 Motorcycle	1.A.3.b.iv	Diesel (gas/diesel oi	0.0	0.0	0.0	0.0]								
8 6. Adjust the amou	ints for categor	y 1.A.3.b.iii as it inclu	des both buses a	nd heavy-dut 2019	y trucks	2021									
9 0 Vehicle type	1000	[J								
	IPCC category	Fuel type		-	per category per fuel ty		1								
1 Light passenger (Cars)	1.A.3.b.i	motor gasoline (petro	24.9	0.0	0.0	0.0									
	1.A.3.b.i	Diesel (gas/diesel oi	0.0	0.0	0.0	0.0									
13 Light duty track 14 Light duty track	1.A.3.b.ii 1.A.3.b.ii	motor gasoline (petro Diesel (gas/diesel oi		0.0	0.0	0.0									
	1.A.3.b.iii	motor gasoline (petro	0.0	0.0	0.0	0.0									
Heavy-duty trucks &	I						I				-				
 Read r 	me vehicle co	ounts - summary Ve	hicle registration_V	NSO Assi	umptions & fuel prop	erties	Data cleansir	ng Data tra	insformation	n	\oplus		E		Þ
Ready] –		

2.4 For table 4 in Sheet "Data Transformation" repeat the same approach as in step 2.3.

2.5 In table 5 in sheet "Data Transformation" Distinguish between fuel consumed by vehicles with and without 3-way catalysts using the equation:

- i. Fuel Consumed by Vehicles with 3-way catalysts = Annual Fuel Consumed in TJ per category X 0.9
- ii. Fuel Consumed by Vehicles without 3-way catalyst = Annual Fuel Consumed in TJ per category Fuel Consumed by Vehicles with 3-way catalysts.

See illustration below

日 り・ C・ =	D1_S4a_Veł	hicle emission exercise_T1	(1) - Excel	,	ch						Sign in	Ŧ	- 1	o x
File Home Inse	ert Page Layou	ut Formulas Da	ita Review	View Help	0									🖻 Share
Paste Calibri B I Clipboard S				'rap Text lerge & Center	- Number - \$ - % 9	~ 00. 0; 0, 00.	Conditional Fo Formatting ~ 1 Sty	ſable ∽ Styles ∽	Insert De	elete Format	∑ AutoSur ↓ Fill ~ ♦ Clear ~	乙 ¥ Sort i	7 & Find & * Select *	
Cipboard 131	Font		Airgnment		isi number	121	Sty	nes		ens.		Euting		^
D53 🔻 : 🔅	$\times \checkmark f_x$	=D41*0.9												~
46 buses 47 Motorcycle	B 1.A.3.b.iii 1.A.3.b.iv 1.A.3.b.iv	C Diesel (gas/diesel oi motor gasoline (petro Diesel (gas/diesel oi	D 0.0 0.0 0.0	E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	F 0.0 0.0 0.0	G 0.0 0.0 0.0		1	J	К	L	М	N	
		e categories 1.A.3.b. v catalysts		-	-		1					_		
51			2018	2019	2020	2021]	Use	the value:	from				
	IPCC category 1.A.3.b.i.1	Fuel type motor gasoline (petro	22.4	0.0	0.0	0.0		ann TJ p	uual Fuel C per categor	onsumed in y (table 4 ir				
54 with 3-way catalysts	1.A.3.b.i.1	Diesel (gas/diesel oi	22.4	0.0	0.0	0.0		Tra	et "Data nsformatic ltiply by 0.					
Light passenger (Cars) without 3-way catalysts 55	1.A.3.b.i.2	motor gasoline (petro	2.5	0.0	0.0	0.0			mpij by e.					
without 3-way catalysts	1.A.3.b.i.2	Diesel (gas/diesel oi	2.5	0.0	0.0	0.0		ដ	sing the eq	uation :	lly calculate			
56 Light duty track with 3- 57 way catalysts	1.A.3.b.ii.1	motor gasoline (petro	0.0	0.0	0.0	0.0		4	in sheet "I	Data Transfo	in TJ per ca ormation") vith 3~way (~ Fuel	apie	
Light duty track without 3-way catalysts	1.A.3.b.ii.2	motor gasoline (petro	0.0	0.0	0.0	0.0				-				
59 Light duty track	1.A.3.b.ii.2	Diesel (gas/diesel oi	0.0	0.0	0.0	0.0								-
Read n	ne vehicle cou	nts - summary Vel	hicle registration_V	NSO Ass	sumptions & fuel pro	perties	Data cleansing	Data transf	formation	+	:	4		Þ
Ready											E			- + 84%

1.3.2 STEP- BY- STEP CALCULATION, DOCUMENTING RESOURCES USED (sectoral approach)

Water-Borne Calculation for Emissions for Total Consumption:

1.0 Calculate the total consumption suing the stepwise example below

i. Convert Tonnes to Kilotonnes using the equation: Fuel Consumed (kilo tonnes (kt)) = Fuel Consumed (tonnes) / 1000

SHIP TYPE	FUEL TYPE	Fuel Consumption (Tonnes)	Fuel Consumption (kt)
CONTAINER SHIPS	Diesel Oil	131,800	131.8
HIGH SPEED FERRY	Diesel Oil	117,384	117.384

Table 3: showing an example of the conversion Tonnes to Kilo Tonnes.

(*The consumption figures utilized don't correspond to any published data.*)

ii. Convert Kilo Tonnes to TJ using the equation: Fuel consumption (TJ) = Fuel Consumption (kt) X NCV (TJ/Gg (fuel)

Table 4: showing as example of the conversion of Fuel Consumption (kt) to Fuel consumption (TJ).

SHIP TYPE	FUEL TYPE	Fuel Consumption (Tonnes)	Fuel Consumption (kt)	NCV (TJ/Gg (fuel)	Fuel consumption (TJ)
CONTAINER SHIPS	Diesel Oil	131,800	131.8	43	5667.4
HIGH SPEED Diesel FERRY Oil		117,384	117.384	43	5047.512

Note: kt = Gg

iii. Calculate the total Diesel Oil fuel consumed (TJ) by adding the Fuel consumption (TJ) for both the Container ship and high-speed ferry.

Table 5: below show	vs and exa	imple of the total	fuel consumed (TJ) from the add	lition of both Con	tainer ship and hig	h-speed ferry.
						TOTAI	

SHIP TYPE	FUEL TYPE	Fuel Consumption (Tonnes)	Fuel Consumption (kt)	NCV (TJ/Gg (fuel)	Fuel consumption (TJ)	TOTAL FULE CONSUMED (TJ)	
CONTAINER SHIPS	Diesel Oil	131,800	131.8	43	5667.4	10714 012	
HIGH SPEED FERRY	Diesel Oil	117,384	117.384	43	5047.512	10714.912	

USING THE IPCC SOFTWARE VER. 2.901 IPCC INVENTORY SOFTWARE - 64BIT

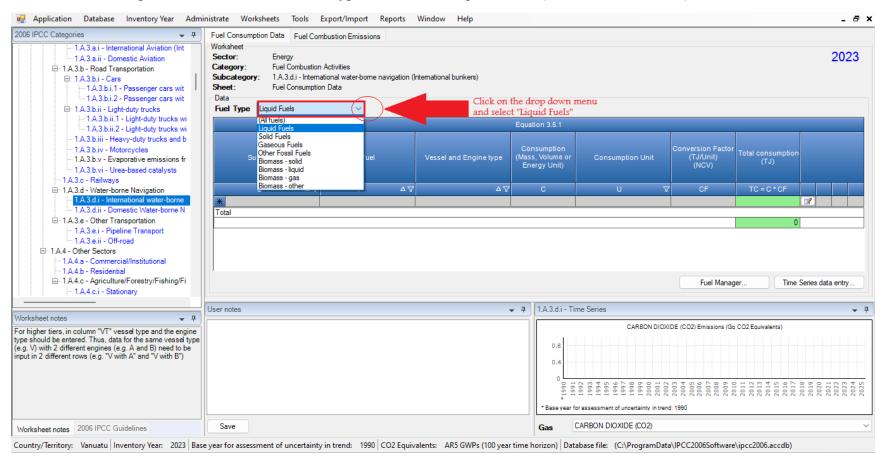
INTERNATIONAL WATER-BORNE NAVIGATION

- 1.1 Launch the IPCC software ver. 2.901 IPCC Inventory software 64bit for national GHG inventories.
- 1.2 Type in your password and username.
- 1.3 Type in the year of your choosing or the current inventory year.

1.4 Locate the bar on the left-hand corner of the page labeled "2006 IPCC categories" (See illustration below).

IPCC Inventory Software - ANITAKAY - [Worksheets]							-	- o ×
🖳 Application Database Investory Year Adm	inistrate Worksheets Tools E	xport/Import Reports	Window Help					_ & ×
2006 IPCC Categories	Fuel Consumption Data Fuel Com	bustion Emissions						
 ⇒ 1 - Energy ⇒ 1.A - Fuel Combustion Activities ⇒ 1.A.1 - Energy Industries ⇒ 1.A.1.a - Main Activity Electricity and H ⇒ 1.A.1.a - Electricity Generation → 1.A.1.a.i = Combined Heat and Pow → 1.A.1.a.i = Heat Plants ⇒ 1.A.1.b Petroleum Refining 	Worksheet Sector: Energy Category: Fuel Combustion Subcategory: 1.A.3.d.i-Interna Sheet: Fuel Consumption Data Fuel Type Liquid Fuels	tional water-borne navigation (Ir	nternational bunkers)					2023
- 1.A.1.c - Manufacture of Solid Fuels an				Equation 3.	.5.1			
	Subdivision	Fuel	Vessel and Engine type	Consump (Mass, Volu Energy U	ume or Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)	
	S AV	F AV	۵ ₇	с	U	v CF	TC = C * CF	
1.A.2.d - Pulp, Paper and Print	*							3
1.A.2.e - Food Processing, Beverages a 1.A.2.f - Non-Metallic Minerals	Total							
1.A.2.g - Transport Equipment 							0	
						Fuel Manag	er Time Se	eries data entry
1.A.2.m - Non-specified Industry						- doi Manag		
	User notes			🗕 🕂 🕹 🗸	3.d.i - Time Series			→ ₽
Worksheet notes 👻 👎					CARBON D	OXIDE (CO2) Emissions (Go	CO2 Equivalents)	
For higher tiers, in column "VT" vessel type and the engine type should be entered. Thus, data for the same vessel type (e.g. V) with 2 different engines (e.g. A and B) need to be input in 2 different rows (e.g. "V with A" and "V with B")					0.8 0.4 0.4 1 2 5 6 6 1 1 2 6 6 6 6 1 1 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2002 2003 2005 2005 2005 2005 2009		2019 2020 2021 2023 2023 2023 2024
Worksheet notes 2006 IPCC Guidelines	Save			Gas				~

1.5 Scroll down the "2006 IPCC Categories" tab and select the subcategory "1.A.3.d.i – International water-borne"


IPCC Inventory Software - ANITAKAY - [Worksheets]		– 0 X
💀 Application Database Inventory Year Admi	nistrate W	orksheets Tools Export/Import Reports Window Help 🗕 🗗 🗙
2006 IPCC Categories 🚽 🖵	Time Series	
	Time Series Category Gas	1 - Energy CARBON DIOXIDE (CO2) ~ CARBON DIOXIDE (CO2) Emissions (Gg CO2 Equivalents)
 1.A.3.b.i - Cars 1.A.3.b.i.1 - Passenger cars wit 1.A.3.b.i.2 - Passenger cars wit 1.A.3.b.ii.1 - Light-duty trucks 1.A.3.b.ii.1 - Light-duty trucks wi 1.A.3.b.ii.2 - Light-duty trucks wi 1.A.3.b.ii.1 - Heavy-duty trucks and b 1.A.3.b.iv - Motorcycles 1.A.3.b.v - Evaporative emissions fr 1.A.3.b.v - Evaporative emissions fr 1.A.3.b.v - Urea-based catalysts 1.A.3.d.i - International water-borne 1.A.3.d.i - International water-borne N 1.A.3.e.i - Other Transportation 1.A.3.e.i - Off-road 1.A.4 - Other Sectors 		1 1 0.9 0.8 0.7 0.6 0.6 0.1 0.7 0.1 0.8 0.1 0.1 0
	* Base year	for assessment of uncertainty in trend: 1990
	User notes	🗸 म 🗍 (1.A.3.d.i - Time Series 🗸 🕂
Worksheet notes 🖵 🖵		
Worksheet notes 2006 IPCC Guidelines	Save	Gas CARBON DIOXIDE (CO2)
Country/Territory: Vanuatu Inventory Year: 2023 Bas	e year for asse	essment of uncertainty in trend: 1990 CO2 Equivalents: AR5 GWPs (100 year time horizon) Database file: (C:\ProgramData\IPCC2006Software\ipcc2006.accdb)

1.6 Click on the drop-down menu from the "Fuel Type" and select "Liquid Fuels" (See illustration below).

1.7 Click on the drop-down menu under the "Subdivision" tab an select "Unspecified"

🖳 Application Database Inventory Year Adm	ninistrate Worksheets Tools Export/Import Reports Window Help	- 8 ×
2006 IPCC Categories 🗸 🤻	Fuel Consumption Data Fuel Combustion Emissions	
	Worksheet Sector: Energy Category: Fuel Combustion Activities Subcategory: 1.A.3.d.i - International water-borne navigation (International bunkers) Sheet: Fuel Consumption Data Data Fuel Fuel Type Liquid Fuels	2023
	Equation 3.5.1	
 1.A.3.b.iii - Heavy-duty trucks and b 1.A.3.b.iv - Motorcycles 1.A.3.b.v - Evaporative emissions fr 1.A.3.b.vi - Urea-based catalysts 1.A.3.c Railways 	Subdivision Fuel Vessel and Engine type Consumption (Mass, Volume or Energy Unit) Consumption Unit Conversion Factor (TJ/Unit) (NCV) Total consumption (TJ)	
□ 1.A.3.d - Water-borne Navigation	S $\Delta \nabla$ Click on the $\Delta \nabla$ C U ∇ CF TC = C + CF	
… 1.A.3.d.i - International water-borne … 1.A.3.d.ii - Domestic Water-borne N		2 🖬 🄊 🗙
I.A.3.e. Other Transportation	To Unspecified menu and select "Unspecified" 0	
 ⊢ 1.A.3.e.i - Pipeline Transport ⊢ 1.A.3.e.ii - Off-road □ - 1.A.4 - Other Sectors ⊢ 1.A.4.a - Commercial/Institutional ⊢ 1.A.4.c Agriculture/Forestry/Fishing/Fi ⊢ 1.A.4.c.i - Stationary 		eries data entry
Worksheet notes	User notes 🗸 🗘 1.A.3.d.i - Time Series	▼ ₽
For higher tiers, in column "VT" vessel type and the engine type should be entered. Thus, data for the same vessel type (e.g. V) with 2 different engines (e.g. A and B) need to be input in 2 different rows (e.g. "V with A" and "V with B")	CARBON DIOXIDE (CO2) Emissions (Gq CO2 Equivalents)	2019 2020 2021 2021 2023 2023 2024 2025
Worksheet notes 2006 IPCC Guidelines	Save Gas CARBON DIOXIDE (CO2)	~

1.8 Under the "Fuel" tab in the table click on the drop-down menu and select "Gas/Diesel Oil"

Application Database Inventory Year Adm Mo6 IPCC Categories	Fuel Consumption Data Fuel		nup					_ 5
□ 1.A.3.a.i - International Aviation (Int □ 1.A.3.a.ii - Domestic Aviation □ 1.A.3.b Road Transportation □ 1.A.3.b.i - Cars □ 1.A.3.b.i.1 - Passenger cars wit □ 1.A.3.b.i.2 - Passenger cars wit □ 1.A.3.b.ii - Light-duty trucks		stion Activities temational water-borne navigation nption Data	n (International bunkers)					2023
				Equation 3.5.1				
 A.3.b.ii.2 - Ugnetuly flucks with a standard standard	Subdivision	Fuel	Vessel and Engine type Click on the drop	Consumption (Mass, Volume or Energy Unit)	Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)	
□ 1.A.3.d - Water-borne Navigation	S Z	Δ V F Δ	⊽ down menu 🛛 🗛 🗸	С	U V	CF	TC = C * CF	
	* Unspecified	(9	Gg (Auto CF)			2 🖬 🄈 🗙
1.A.3.d.ii - Domestic Water-borne N	*	Fuel Type	Fuel Name	Net Calorific Value	Carbon content (NCV)			2
i⊟ 1.A.3.e - Other Transportation 	Total			(TJ / Gg)	(kg C / GJ)			
1.A.3.e.ii - Off-road		Liquid Fuels	Aviation Gasoline	44.3			0	
□ 1.A.4 - Other Sectors			Bitumen	40.2				
			Crude Oil	42.3	20	Select "Gas/D	iesel Oil	
1.A.4.b - Residential			Ethane	46.4				
- 1.A.4.c - Agriculture/Forestry/Fishing/Fi			Gas/Diesel Oil	43			Time Se	ries data entry
			Jet Gasoline	44.3				
	User notes		Jet Kerosene	44.1	19.5			
ksheet notes 👻 👎		-	Liquefied Petroleum Gases	47.3	17.2	: (CO2) Emissions (Ga	0005-1-1-1-1	
higher tiers, in column "VT" vessel type and the engine			Lubricants	40.2	20	: (CO2) Emissions (Gq	CO2 Equivalents)	
should be entered. Thus, data for the same vessel type V) with 2 different engines (e.g. A and B) need to be			Motor Gasoline	44.3	18.9			
t in 2 different rows (e.g. "V with A" and "V with B")			Naphtha	44.5	20			
			Natural Gas Liquids	44.2	17.5			
			Orimulsion	27.5	21	1400000	o -1 o m +t m o h ∞	4 M N H 0 0
			Other Kerosene	43.8	19.6	200 200 200 200 200 200 200	2011 2012 2013 2013 2014 2015 2015 2015 2017 2017	201 202 202 202 202 202 202 202
			Other Petroleum Products	40.2	20	1990		
		_	Paraffin Waxes	40.2	20			
orksheet notes 2006 IPCC Guidelines	Save		Petroleum Coke	32.5	26.6			
			Refinery Feedstocks	43	20			

1.9 Under the "Vessel and Engine type" click on the drop-down menu and select "Unspecified" (See illustration below).

😸 Application Database Inventory Year Admi	inistrate Worksheets Tools	Export/Import Reports	Window Help					_ 8 ×
2006 IPCC Categories 🗸 🔻	Fuel Consumption Data Fuel Con	mbustion Emissions						
- 1.A.3.a.i - International Aviation (Int 1.A.3.a.ii - Domestic Aviation 1.A.3.b Road Transportation 1.A.3.b.i - Cars - 1.A.3.b.i Passenger cars wit - 1.A.3.b.i - Light-duty trucks	Worksheet Sector: Energy Category: Fuel Combustion Subcategory: 1.A.3.di - Intem Sheet: Fuel Consumption Data Fuel Type	ational water-bome navigation (li	nternational bunkers)					2023
1.A.3.b.ii.1 - Light-duty trucks wi 1.A.3.b.ii.2 - Light-duty trucks wi				Equation 3.5.1				
 1.A.3.b.iii - Heavy-duty trucks and b 1.A.3.b.iv - Motorcycles 1.A.3.b.v - Evaporative emissions fr 1.A.3.b.vi - Urea-based catalysts 	Subdivision	Fuel	Vessel and Engine type	Consumption (Mass, Volume or Energy Unit)	Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)	
1.A.3.c - Railways ⊟1.A.3.d - Water-borne Navigation	S AV	F AV	Δ7	С	U V	CF	TC = C * CF	
1.A.3.d.i - International water-borne	* Unspecified	Gas/Diesel Oil		9	Gg (Auto CF)	43		2 🖬 🤊 🗙
			Select "U	nspecified"		Fuel Manag	0 er Time \$	Series data entry
	User notes			4 1.A.3.d.i - Ti	ime Series			→ ₽
Worksheet notes • • • • • • • • • • • • • • • • • • •				*	CARBON DIOXI		N M 4 10 0 N 0	2018 2020 2021 2021 2023 2023 2023 2023 2023
Worksheet notes 2006 IPCC Guidelines	Save			Gas	CARBON DIOXIDE (CO2)			~

2. Under the "Consumption" tab in the table, enter the total consumption into the cell (See illustration below).

🖳 Application Database Inventory Year Adm	lministrate Worksheets Tools Export/Import Reports Window Help	_ 8 ×
2006 IPCC Categories • 4 1.4.3.a.i - International Aviation (Int 1.4.3.a.ii - Domestic Aviation -1.4.3.b.i - Road Transportation -1.4.3.b.i - Cars -1.4.3.b.i.1 - Passenger cars wit -1.4.3.b.i.2 - Passenger cars wit -1.4.3.b.i - Light-duty trucks	Fuel Consumption Data Fuel Combustion Emissions Worksheet Sector: Energy Category: Fuel Combustion Activities Subcategory: 1.A.3.d.j. International water-borne navigation (International bunkers) Sheet: Fuel Consumption Data Data Fuel Type	2023
	Equation 3.5.1	
 1.A.3.b.iii - Heavy-duty trucks and b 1.A.3.b.iv - Motorcycles 1.A.3.b.v - Evaporative emissions fr 1.A.3.b.vi - Urea-based catalysts 	Subdivision Fuel Vessel and Engine type Consumption (Mass, Volume or Energy Unit) Consumption Unit Conversion Factor (TJ/Unit) (NCV) Total consumption (TJ)	
- 1.A.3.c - Railways		
 1.A.3.d.i - International water-borne 1.A.3.d.ii - Domestic Water-borne N 	🔭 Unspecified Gas/Diesel Oil Unspecified 🗸 🔂 10714.912 Gg (Auto CF) 43	2 J 7 X
I.A.3.e - Other Transportation I.A.3.e.i - Pipeline Transport		
1.A.3.e.ii - Off-road 1.A.4 - Other Sectors 1.A.4.a - Commercial/Institutional □.1.A.4.c - Agriculture/Forestry/Fishing/Fi □.1.A.4.c.i - Stationary	Enter the total consumption into the cell	eries data entry
	User notes 🗸 📮 🛛 1 A 3 d i - Time Series	– 4
Worksheet notes 👻 🔻		• +
For higher tiers, in column "VT" vessel type and the engine type should be entered. Thus, data for the same vessel type (e.g. V) with 2 different engines (e.g. A and B) need to be input in 2 different rows (e.g. "V with A" and "V with B")	CARBON DIOXIDE (CO2) Emissions (Gq CO2 Equivalents)	2019 2020 2021 2022 2023 2023 2023 2023
Worksheet notes 2006 IPCC Guidelines	Save Gas CARBON DIOXIDE (CO2)	~

2.1 Click on the drop-down menu under the "Consumptions Unit" tab in the table, and select "TJ" (See illustration below).

🖳 Application Database Inventory Year Adm	ninistrate Worksheets Tools	Export/Import Reports	Window Help					_ 8 ×
2006 IPCC Categories 🗾 👻 👎	Fuel Consumption Data Fuel Co	mbustion Emissions						
- 1.A.3.a.i - International Aviation (Int	Worksheet Sector: Energy Category: Fuel Combustio Subcategory: 1.A.3.d.i - Interr Sheet: Fuel Consumpti Data Fuel Type Liquid Fuels	national water-bome navigation ((International bunkers)					2023
1.A.3.b.ii.1 - Light-duty trucks wi 1.A.3.b.ii.2 - Light-duty trucks wi			E	Equation 3.5.1				
- 1.4.3.b.iv - Motorcycles - 1.4.3.b.v - Evaporative emissions fr - 1.4.3.b.v - Lvaporative emissions fr	Subdivision	Fuel	Vessel and Engine type (Consumption Mass, Volume or Energy Unit)	Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)	
- 1.A.3.d - Water-borne Navigation	S AV	F AV		С	U 🖓	CF	TC = C * CF	
- 1.A.3.d.i - International water-borne	* Unspecified	Gas/Diesel Oil	Unspecified	10714.912	Gg (Auto CF)	43	460741.216 📝	' 🖬 ႒ 🗙
1.A.3.d.ii - Domestic Water-borne N	*				Gg (Auto CF)	Click on the		
1.A.3.e - Other Transportation 1.A.3.e.i - Pipeline Transport	Total				Go (Manual CE)	down menu	460741.216	
└── 1.A.3.e.ii - Off-road □─ 1.A.4 - Other Sectors └── 1.A.4.a - Commercial/Institutional └── 1.A.4.b - Residential □── 1.A.4.c - Agriculture/Forestry/Fishing/Fi					Select the "TJ	" Fuel Manage		es data entry
- 1.A.4.c.i - Stationary								
	User notes		•	4 1.A.3.d.i - Tir	me Series			→ ‡
Worksheet notes				0.8 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CARBON DIOX CARBON DI CARBON DIOX CARBON DIOX CARBON DIOX CARBON DIOX CARBON D		CO2 Equivalents)	
Worksheet notes 2006 IPCC Guidelines	Save			Gas	CARBON DIOXIDE (CO2)			~
Country/Territory: Vanuatu Inventory Year: 2023 Bas	se year for assessment of uncertaint	y in trend: 1990 CO2 Equi	valents: AR5 GWPs (100 vear ti	me horizon) Data	abase file: (C:\ProgramDat	a\IPCC2006Software\	ipcc2006.accdb)	

2.2 Click on the "Fuel Combustion Emissions" tab (See illustration below).

		ion Data Fuel Co	ombustion Err	nissions						
	Worksheet Sector: Category: Subcategory: Sheet: Data Fuel Type	Fuel Consumpt	tion I	pome navigation (Click on the "F Combustion Es						2023
						Equation 3.5.1				
 1.A.3.b.iii - Heavy-duty trucks and b 1.A.3.b.iv - Motorcycles 1.A.3.b.v - Evaporative emissions fr 1.A.3.b.v - Urea-based catalysts 1.A.3.c. Railways 	Sut	odivision		Fuel	Vessel and Engine type	Consumption (Mass, Volume or Energy Unit)	Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)	
1.A.3.d - Water-borne Navigation	:	s at	7	F AV	Δ γ	С	U 7	CF	TC = C * CF	
1.A.3.d.i - International water-borne 1.A.3.d.ii - Domestic Water-borne N	🔭 Unspecifi	ed	Gas/Diesel	l Oil	Unspecified	10714.912	2 Gg (Auto CF)	43	460741.216	2 🖬 🎾 🗙
□ 1.A.3.e - Other Transportation	* Total									
1.A.3.e.ii - Off-road										
 □ 1.A.4 - Other Sectors □ 1.A.4.a - Commercial/Institutional □ 1.A.4.b - Residential □ 1.A.4.c - Agriculture/Forestry/Fishing/Fi □ 1.A.4.c.i - Stationary 								Fuel Manage	er Time S	ieries data entry
	User notes					• 🗣 1.A.3.d.i - T	Time Series	Fuel Manage	er Time S	ieries data entry
Worksheet notes → ₽						• # 1.A.3.d.i - T		Fuel Manage		
						0.8 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IDE (CO2) Emissions (Gq 10E (CO2) Emissions (Gq 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CO2 Equivalents)	• 4

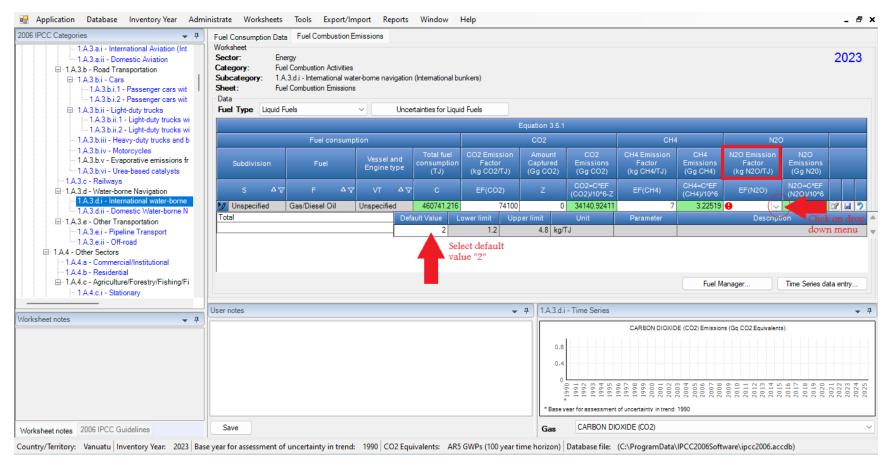
2.3 Click on the drop-down menu under the tab "CO₂ Emission Factor (kg CO₂/TJ)" and select "74100" (See illustration below).

🖳 Application Database Inventory Year Adm	ninistrate Worksheets	Tools Export/In	nport Reports	Window	Help							_ 8 ×
2006 IPCC Categories • 4 - 1.A.3.a.i - International Aviation (Int - 1.A.3.a.ii - Domestic Aviation - 1.A.3.b - Road Transportation - 1.A.3.b - Cars - 1.A.3.b.i - Cars - 1.A.3.b.i - Passenger cars wit - 1.A.3.b.i 2. Passenger cars wit	Category: Fue Subcategory: 1.A	Fuel Combustion E ergy el Combustion Activities .3.d.i - International wat el Combustion Emissions	ter-borne navigation	(International b	unkers)							2023
⊟ 1.A.3.b.ii - Light-duty trucks	Fuel Type Liquid F	uels	V	rtainties for Liqu	id Fuels)						
						Equati	ion 3.5.1					
- 1.A.3.b.iii - Heavy-duty trucks and b		Fuel consump	otion			C	02	CH	4	N20)	
1.A.3.b.iv - Motorcycles 1.A.3.b.v - Evaporative emissions fr 1.A.3.b.v - Urea-based catalysts	Subdivision	Fuel	Vessel and Engine type	Total fuel consumption (TJ)	CO2 Emissio Factor (kg CO2/TJ	Cap	mount CO2 ptured Emissio g CO2) (Gg CO	ns Factor	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)	
	S AV	F AV			EF(CO2)		Z CO2=C (CO2)/10	^6-Z EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6	
1.A.3.d.ii - Domestic Water-borne N	Unspecified Total	Gas/Diesel Oil	Unspecified	460741.216 ault Value L	· - · · · · · · · · · · · · · · · · · ·	Upper lim	nit Unit	Parameter		Descript		
- 1.A.3.e - Other Transportation - 1.A.3.e,i - Pipeline Transport			Den	4011 Value 1	72600		800 kg/TJ	Parameter		Descript	ion	_
└──1A3.e.ii - Off-road □─ 1.A4 - Other Sectors └──1.A4.a - Commercial/Institutional └──1.A4.b - Residential □──1.A4.c - Agriculture/Forestry/Fishing/Fi └──1.A4.c.i - Stationary				Selec	t "74100"				Fuel N	lanager	Time Series da	ata entry
Worksheet notes	User notes					• P	1.A.3.d.i - Time Se	ies				▼ ₽
							*	CARBON DIOXI 1661 1666 1666 1666 1666 1666 1666 16	2003 2004 2005 2005 2007 2007	ns (Gq CO2 Equivalent Gq CO2 Equivalent 1000 0 1111 0 011 0 0 00 0 0 0 0 0 0 0 0 0 0 0		2021 2022 2023 2024 2025
Worksheet notes 2006 IPCC Guidelines	Save						Gas CARBO	IN DIOXIDE (CO2)				~

2.4 Under the "Amount Captured (Gg CO₂)" tab, Enter the value "0" (See illustration below).

🖳 Application Database Inventory Year Adm	inistrate Worksheets	Tools Export/In	nport Reports	Window	Help							- 8 ×
2006 IPCC Categories	Subcategory: 1.A.3		er-borne navigation	ı (International bu	unkers)							2023
	Data Fuel Type Liquid Fu	els	 ✓ Unce 	rtainties for Liqui	d Fuels							
						Equation 3.5.1						
1.A.3.b.iii - Heavy-duty trucks and b		Fuel consump	otion			CO2		CH4	4	N20)	
1.A.3.b.iv - Motorcycles 1.A.3.b.v - Evaporative emissions fr 1.A.3.b.vi - Urea-based catalysts	Subdivision	Fuel	Vessel and Engine type	Total fuel consumption (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)	
 I.A.3.c - Railways I.A.3.d - Water-borne Navigation I.A.3.d.i - International water-borne 	S △▽	F △ ▽ Gas/Diesel Oil	VT ∆⊽ Unspecified	C 460741.216	EF(CO2) 74100	z	CO2=C*EF (CO2)/10^6-Z 34140.92411	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6	7 . 7
I.A.3.d.ii - Domestic Water-borne N I.A.3.e - Other Transportation I.A.3.e.i - Pipeline Transport	Total	Gas/Dieser Oli	Unspecified	460741.216			34140.92411	•	0		0	
□ 1.A.3.e.i = Offroad □ 1.A.4 - Other Sectors □ 1.A.4.a - Commercial/Institutional □ 1.A.4.b - Residential							Enter "0" into cell	the				
□ 1.A.4.c - Agriculture/Forestry/Fishing/Fi □ 1.A.4.c Stationary									Fuel M	lanager	Time Series da	ta entry
	User notes				•	₽ 1.A.3.d.	- Time Series					▼ ₽
Worksheet notes - 4								CARBON DIOXIE	DE (CO2) Emissio	ns (Gq CO2 Equivalent	s)	
						0.8						
						* Base	×	of uncertainty in trend:		2009 2010 2011 2011 2012 2013 2014	2016 2017 2018 2019 2019	2021 2022 2023 2024 2025 2025
Worksheet notes 2006 IPCC Guidelines	Save					Gas	CARBON DIG	DXIDE (CO2)				~

2.5 select the drop-down menu under the "CH₄ Emission Factor (kg CH₄/TJ)" tab and select the default value "7" (See illustration below).


06 IPCC Categories 🗸 🗸	Fuel Consumption Da	ta Fuel Combustion E	Emissions									- 8
	Category: Fu Subcategory: 1.	nergy uel Combustion Activities A.3.d.i - International wa uel Combustion Emission:	ter-borne navigation	n (International bu	unkers)							2023
□ 1.A.3.b.ii - Light-duty trucks	Fuel Type Liquid	Fuels	 ✓ Unce 	artainties for Liqui	d Fuels							
1.A.3.b.ii.1 - Light-duty trucks wi						Equation 3.5.1						
		Fuel consump	otion			CO2		CH4		N2	0	
	Subdivision	Fuel	Vessel and Engine type	Total fuel consumption (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)	
 — 1.A.3.c - Railways — 1.A.3.d - Water-borne Navigation — 1.A.3.d.i - International water-borne 	s An	⊽ F Δ⊽	VT AV	с	EF(CO2)	z	CO2=C*EF (CO2)/10^6-Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6	
	M Unspecified	Gas/Diesel Oil	Unspecified	460741.216				- (-)	θ		22
- 1.A.3.e - Other Transportation 1.A.3.e.i - Pipeline Transport	Total		Def	ault Value L	ower limit Upp 3.5	perlimit 10.5 kg/1	Unit	Parameter		Descrip	tion	
 □-1.A.4 - Other Sectors □-1.A.4.a - Commercial/Institutional □-1.A.4.b - Residential □-1.A.4.c - Agriculture/Forestry/Fishing/Fi □-1.A.4.c - Stationary 				Sele	ot "7"				Fuel M	lanager	Time Series da	ata entry
	User notes					4 1.A.3.d.i	- Time Series					•
orksheet notes 👻 👎					•	T 1.7.3.0.1	Time Series					•
	11							CARBON DIOXID	E (CO2) Emissio	ns (Gq CO2 Equivalen	ts)	
						0.8						
						0.4	1990 1993 1993 1994 1995	1996 1997 1998 2000 2001 2001 2002	2004 2005 2005 2005 2007 2008	2009 2010 2011 2012 2013 2014	2015 2016 2017 2018 2019 2020	2021 2022 2023 2024
						0.4		2000 2000 2661 2661 2661 2000 2007 2007 2007 2007 2007 2007 200		2009 2011 2011 2012 2013 2013	2015 2017 2017 2018 2019 2020	2021 2022 2023 2024
/orksheet notes 2006 IPCC Guidelines	Save					0.4		of uncertainty in trend:		2009 2010 2011 2013 2013 2014 2014	2015 2016 2017 2018 2019 2020 2020	2021 2022 2023 2024

2.6 Under the tab " N_2O Emissions Factor (kg N_2O/TJ) click on the drop-down menu and select the default value "2" (See illustration below).

DOMESTIC WATER-BORNE NAVIGATIONN

2.8 Under the "2006 IPCC categories" tab select the subcategory "1.A.3.d.ii – Domestic Water – borne Navigation (International Bunkers) (See illustration below).

	Fuel Consumption Data	Fuel Combust	tion Emissions								
 1A.3.a.i - International Aviation (Int 1A.3.a.ii - Domestic Aviation 1A.3.b Road Transportation 1A.3.b.i - Cars 1A.3.b.i.1 - Passenger cars wit 1A.3.b.i.2 - Passenger cars wit □ 1.A.3.b.ii - Light-duty trucks 	Subcategory: 1.A.3.d	ombustion Activ l.ii - Domestic V onsumption Dat	Water-borne Nav	igation						20	023
						Equation 3.5.1					
 IA3.b.ii - Heavy-duty trucks wi IA3.b.iii - Heavy-duty trucks and b IA3.b.vi - Motorcycles IA3.b.vi - Evaporative emissions fr IA3.b.vi - Urea-based catalysts IA3.c. Railways 	Subdivision		Fuel		Vessel and Engine type	Consumption (Mass, Volume or Energy Unit)	Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)		
- 1.A.3.d - Water-borne Navigation	S	ΔV	F	ΔV		с	U V	CF	TC = C * CF		
- 1.A.3.d.i - International water-borne		Gas/	/Diesel Oil		Unspecified		TJ	1	80999	200	
1.A.3.d.ii - Domestic Water-borne N 🔫		Click on '	"1.A.3.d.ii ~	Domes	tic					2	
		water~pc	orne Navigat						80999		
1.A.4.a - Commercial/Institutional 1.A.4.b - Residential											
								Fuel Manag	jer Time S	eries data en	ntry
- 1.A4.b - Residential - 1.A4.c - Agriculture/Forestry/Fishing/Fi - 1.A4.c.i - Stationary	User notes					- ₽ 1.A.3.d.ii - 1	Time Series	Fuel Manag	jer Time S	eries data en	
-1.A.4.b - Residential -1.A.4.c - Agriculture/Forestry/Fishing/Fi -1.A.4.c - Stationary								Fuel Manag		eries data en	ntry
-1.A.4.b - Residential -1.A.4.c - Agriculture/Forestry/Fishing/Fi -1.A.4.c.i - Stationary 						8000 6000 4000 2000 0 1	CARBON DIOXI	DE (CO2) Emissions (Gq	(CO2 Equivalents)		•

2.9 Repeat steps 1.6 to 2.6.

AVIATION

Civil Aviation Calculation for Emissions of Fuel Consumption (TJ).

1.0 calculate the Fuel consumption for Aviation using the stepwise example below

STEPWISE EXAMPLE

i. Convert Litres to Kilograms using the equation:
 Fuel Consumed (kilo tonnes (kg) = Fuel Consumed (litres) X Fuel Denisty (Kg/L)

 $\frac{\text{Convert Kg/L to Kg/m}^3}{\text{Kg / L} = (\text{Kg / m}^3)/1000}$

Table 6: showing an example of the conversion litres to Kilograms.

Fuel Type	Fuel Consumption (liter)	Fuel Density (kg/L)	Fuel Consumption (Kg)
Aviation Gasoline	10000000	725kg/m3 (= 0.725 kg/L)	7250000

(The consumption figures utilized don't correspond to any published data.)

ii. Convert Fuel Consumption (kg) to Fuel Consumption (kt) using the equation: Fuel Consumption (kt) = Fuel Consumption (Kg) / 1000000

Table 7: showing an example of the conversion of kilograms to kt.

Fuel Type	Fuel Consumption (liter)	Fuel Density (kg/L)	Fuel Consumption (Kg)	Fuel Consumption (kt)
Aviation Gasoline	10000000	725kg/m3 (= 0.725 kg/L)	7250000	7.25

iii. Convert Fuel consumption (kt) to Fuel Consumption (TJ) using the equation:

Fuel Consumption (TJ) = Fuel Consumption (kt) X NCV (TJ/Gg)

Table 8: showing an example of the conversion from Fuel consumption (kt) to Fuel Consumption (TJ).

Fuel Type	Fuel Consumption (liter)	Fuel Density (kg/L)	Fuel Consumption (Kg)	Fuel Consumption (kt)	NCV (TJ/Gg)	Fuel Consumption (TJ)
Aviation Gasoline	10000000	725kg/m3 (= 0.725 kg/L)	7250000	7.25	44.3	321.175

USING THE IPCC SOFTWARE VER. 2.901 IPCC INVENTORY SOFTWARE - 64BIT

INTERNATIONAL WATER-BORNE NAVIGATION

- 1.1 Launch the IPCC software ver. 2.901 IPCC Inventory software 64bit for national GHG inventories.
- 1.2 Type in your password and username.
- 1.3 Type in the year of your choosing or the current inventory year.

1.4 Locate the bar on the left-hand corner of the page labeled "2006 IPCC categories" (See illustration below).

🖳 Application Database Investory Year Adm	ministrate Worksheets Tools Expo	ort/Import Reports Window	Help				_ & ×
2006 IPCC Categories		tion Emissions LTO Fuel consum	ption and LTO emissions	- Tier 2 Cruise and total emission	s - Tier 2		
- 1.A.2.8 - Iron and Steel - 1.A.2.b - Non-Ferrous Metals - 1.A.2.c - Chemicals - 1.A.2.c - Chemicals - 1.A.2.e - Food Processing, Beverages a - 1.A.2.f - Non-Metallic Minerals - 1.A.2.g - Transport Equipment	Sector: Energy Category: Fuel Combustion Acti Subcategory: 1.A.3.a.i - Internation	al Aviation (International Bunkers)					2023
			Equ	uation 3.6.1			
 1.A.2.j - Wood and wood products 1.A.2.k - Construction 1.A.2.l - Textile and Leather 1.A.2.n - Non-specified Industry 	Subdivision	Fuel	Consumption (Mass, Volume or Energy Unit)	Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)	
	S AV	F AV	с	u v	CF	TC = C * CF	
- 1.A.3.a.i - International Aviation (Int	V Unspecified	Gas/Diesel Oil		TJ	1		2 2 3 x
BPCC Categories Fuel Consumption Data Fuel Consumption matching Consumption and LTO emissions - Tier 2 Cruise and total emissions - Tier 2 14.22 - Iron and Steel Fuel Consumption Data Euclosumption and LTO emissions - Tier 2 Cruise and total emissions - Tier 2 2023 14.22 - Iron and Steel Fuel Consumption and LTO emissions - Tier 2 Cruise and total emissions - Tier 2 2023 14.22 - Food Processing, Beverages at 14.22 - Transport Equipment Fuel Consumption Data 2023 14.23 - Machinery Fuel Consumption Data State Tier State							
Image: contraction of the second processing in the second process							
 1.A.3.b.i.1 - Passenger cars wit 1.A.3.b.i.2 - Passenger cars wit ■ 1.A.3.b.ii.1 - Light-duty trucks ■ 1.A.3.b.ii.1 - Light-duty trucks wi ■ 1.A.3.b.ii.2 - Light-duty trucks wi 					Fue		
	User notes		🔶 İ	1.A.3.a.i - Time Series			т Ф
				0.8 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 0 0 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 0		2017 2018 2019 2020 2021 2023 2023 2023 2023 2023
Worksheet notes 2006 IPCC Guidelines	Save			Gas CARBON DIOXIDE (CO2)		~
Country/Territory: Vanuatu Inventory Year: 2023 Bas	ase year for assessment of uncertainty in t	rend: 1990 CO2 Equivalents: A	R5 GWPs (100 year time	horizon) Database file: (C:\Pro	gramData\IPCC2006So	oftware\ipcc2006.accdł	o)

1.5 Click on the subcategory "1.A.3.a.i – international Aviation" (See illustration below)

IPCC Inventory Software - ANITAKAY - [Worksheets]							-	o x
🖳 Application Database Inventory Year Adm	iinistrate Worksheets Tools Expo	rt/Import Reports Window	Help					_ 8 ×
2006 IPCC Categories - P		ion Emissions LTO Fuel consump	otion and LTO emissions -	- Tier 2 Cruise and total emission	ns - Tier 2			
	Sector: Energy Category: Fuel Combustion Activ Subcategory: 1.A.3.a.i - Internationa	Aviation (International Bunkers)						2023
1A2a - Iron and Steel 1A2a - Iron and Steel 1A2b - Non-Ferrous Metals 1A2b - Other Reals 1A2b - Other Reals 1A2b - Other Reals 1A2b - Other Reals 1A2b - Other Reals 1A2b - Non-Ferrous Metals Subcategory: 1A2b - Non-Specified Industry Subcategory: 1A2b - Non-specified Industry Subcategory: 1A3a - Civil Aviation Fuel Consumption Consumption Unit Consumption Consumption Unit Consumption Consumption 1A3a - Civil Aviation Subdivision Fuel Fuel 1A3b - Case Subdivision Fuel Gas/Diesel ON 1A3b - Read Transportation Sa - Civil Aviation F 1A3bi - Passenger cars wit Sa - Civic Kon "1.A.3.a.i - 1A3bi 1 - Spesenger cars wit International Aviation 1A3bi 1 - Spesenger cars wit Sa								
	Subdivision	Fuel	(Mass, Volume or	Consumption Unit	(TJ/Unit)			
	Δų				CF			
	Total Click on "1.A.3.a.i ~			TJ	Tue Tue	5667.4		
	User notes		↓ Ĥ	1.A.3.a.i - Time Series				, џ
Worksheet notes				0.8	1999 2000 2001 2003 2003 2005 2005 2005		2017 2018 2019 2020	2021 2022 2023 2023 2024 2025
Worksheet notes 2006 IPCC Guidelines	Save			Gas CARBON DIOXIDE	CO2)			~

1.6 Click on the drop-down menu from the "subdivision" tab and select "Unspecified" (See illustration below)

ODG IPCC Categories • • •	_ 8 ×						
2006 IPCC Categories 🗸 🗸		tion Emissions LTO Fuel consump	otion and LTO emissions	- Tier 2 Cruise and total emissio	ns - Tier 2		
T.A.2.c - Chemicals T.A.2.d - Pulp, Paper and Print T.A.2.e - Food Processing, Beverages a T.A.2.f - Non-Metallic Minerals T.A.2.g - Transport Equipment T.A.2.h - Machinery	Sector: Energy Category: Fuel Combustion Act Subcategory: 1.A.3.a.i - Internation Sheet: Fuel Consumption Data	al Aviation (International Bunkers) ata					2023
			Eq	uation 3.6.1			
	Subdivision	Fuel	(Mass, Volume or	Consumption Unit	(TJ/Unit)		
	S A7	ν F Δγ	С	U V	CF	TC = C * CF	
			θ	Gg (Auto CF)			2 🖬 🄈 🗙
	porties A2b - Non-Ferrous Metals A2c - Chemicals A2c - Chemical Antalan (Inter- Tal A2bi - Chemical A2bi - Chemical Antalan (Inter- Tal A2bi - Chemical A2bi - Chemical Antalan (Inter- Tal A2bi - Chemical A2	-					
					Fue	I Manager	me Series data entry
V/skabast sates	User notes		↓ ₽	1.A.3.a.i - Time Series			▼ ₽
				0.8	1999 2000 2001 2002 2003 2004 2005 2005 2005		2017 2018 2019 2020 2021 2022 2022 2023 2024 2025
Worksheet notes 2006 IPCC Guidelines	Save			Gas CARBON DIOXIDE	(CO2)		~

1.7 Under the "Fuel" tab in the table, click on the drop-down menu and select Aviation Gasoline "(See illustration below).

2006 IPCC Categories 🗸 🔻		Combustion Emissions						
- 1.A.3.a.i - International Aviation (Int - 1.A.3.a.ii - Domestic Aviation - 1.A.3.b Road Transportation □- 1.A.3.b.i - Cars □- 1.A.3.b.i.1 - Passenger cars wit □- 1.A.3.b.i.2 - Passenger cars wit □- 1.A.3.b.i - Light-duty trucks	Sector: Energy Category: Fuel Combu Subcategory: 1.A.3.d.i - Ir	nternational water-borne navigat	ion (International bunkers)					2023
				Equation 3.5.1				
	Subdivision	Fuel	Vessel and Engine type Click on the drop	Consumption (Mass, Volume or Energy Unit)	Consumption Unit	Conversion Factor (TJ/Unit) (NCV)	Total consumption (TJ)	
IA3.a.i - International Aviation (Int 1A3.a.ii - Domestic Aviation IA3.b.i - Cars IA3.b.i - Light-duty trucks IA3.b.i - Light-duty trucks wi IA3.b.ii - Light-duty trucks wi IA3.b.ii - Light-duty trucks wi IA3.b.ii - Heavy-duty trucks and b IA3.b.ii - Heavy-duty trucks and b IA3.b.iv - Motorcycles IA3.b.v - Evaporative emissions fr		∆∀ F .	∆∀ down menu ∆5	7 C	U Z	7 CF	TC = C * CF	
	🔭 Unspecified	(0	Gg (Auto CF)			🕑 🖬 🍠 🗙
	*	Fuel Type	Fuel Name	Net Calorific Value				
	Total			(TJ / Gg)	(kg C / GJ)			
		Liquid Fuels	Aviation Gasoline Bitumen	44.				
			Crude Oil	40.		Select "A	viation Gasoli	ne"
			Ethane	42.				
			Gas/Diesel Oil	40.		Fuel Manag	Trees	Series data entry
			Jet Gasoline	44.				Series data entry
			Jet Kerosene	44.		·		
Norksheet notes	User notes		Liquefied Petroleum Gases	47.				•
			Lubricants	40.		: (CO2) Emissions (Gq	CO2 Equivalents)	
type should be entered. Thus, data for the same vessel type			Motor Gasoline	44.				
			Naphtha	44.				
input in 2 different rows (e.g. V with A and V with D)			Natural Gas Liquids	44.				
			Orimulsion	27.				
			Other Kerosene	43.		004 005 005 007 008 009 009	011 012 012 013 013 014 015 015 015 017 017 017 017 017 017 017 017 017 017	2018 2019 2020 2021 2022 2023 2023 2023
			Other Petroleum Products	40.	2 20			
			Paraffin Waxes	40.	2 20	1990		
Worksheet notes 2006 IPCC Guidelines	Save		Petroleum Coke	32.	5 26.6			
	· · · · · · · · · · · · · · · · · · ·		Refinery Feedstocks	4	3 20			
Country/Territory: Vanuatu Inventory Year: 2023 Bas	se year for assessment of uncert	aint	Refinery Gas	49	5 15.7	PCC2006Software	(Ipcc2006.accdb)	

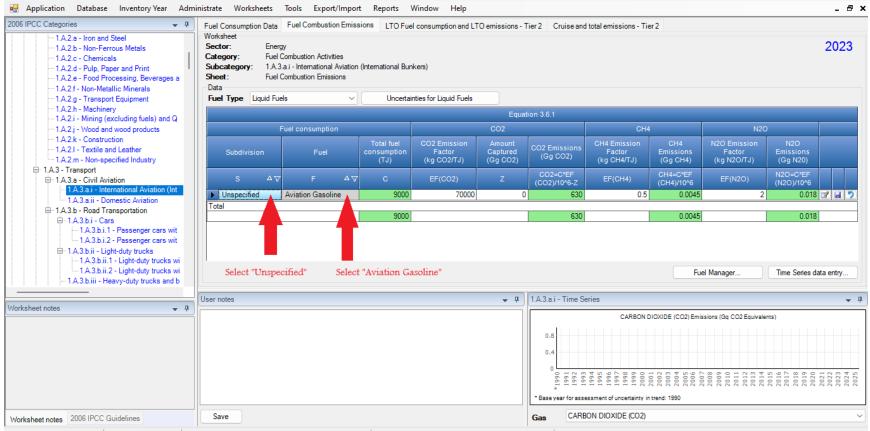
1.8 Enter the Consumption (TJ) value into the cell under the "Consumption (Mass, Volume or Energy Unit)" tab in the table (See illustration below)

🖷 Application Database Inventory Year Adm	ninistrate Worksheets Tools Exp	oort/Import Reports Window	Help					- 8	×
2006 IPCC Categories 🗸 🗸	- der combus	stion Emissions LTO Fuel consum	ption and LTO emissions	- Tier 2 Cruise and total emission	ıs - Tier 2				
	Sector: Energy Category: Fuel Combustion Act Subcategory: 1.A.3.a.i - Internation	nal Aviation (International Bunkers)						2023	
			I consumption and LTO emissions - Tier 2 Cruise and total emissions - Tier 2						
	Subdivision	Fuel	(Mass, Volume or	Consumption Unit	(TJ/Unit)				
1.A.3.a. i - International Aviation (Int	S A7	F AV	С	U V	CF	TC = C * CF	2023		
1.A.3.a.ii - Domestic Aviation	* Unspecified	Gas/Diesel Oil	▲ 5667.4	Gg (Auto CF) 🗸 🗸	43	2023 tsion Factor J/Uniti) CF TC = C * CF 43 243698.2 243698.2 Image: Imag			
I.A.3.b - Road Transportation	*								
Image: State of the state				1					
					Fue	Manager	me Senes o	data entry	
	User notes		▼ 4	1.A.3.a.i - Time Series		Image: Construction (TJ) Image: Constred (TJ) Image: Constr			
Worksheet notes 👻 👎						·····			-
2005 IPCC Categories PLA 2b: Non-Ferrous Malais PLA 2b: Non-Ferrous Malais Malais Non Time Series PLA 2b									
				0.4 0.4 0.661 2661 2661 2661 1661 1661		2008 2009 2010 2011 2011 2013 2014 2015	2017 2018 2019 2020	2021 2022 2023 2023 2023	2025
Worksheet notes 2006 IPCC Guidelines	Save			Gas CARBON DIOXIDE (CO2)				\sim
Country/Territory: Vanuatu Inventory Year: 2023 Ba	ase year for assessment of uncertainty in	trend: 1990 CO2 Equivalents: A	R5 GWPs (100 year time	e horizon) Database file: (C:\Pro	gramData\IPCC2006S	oftware\ipcc2006.accd)		

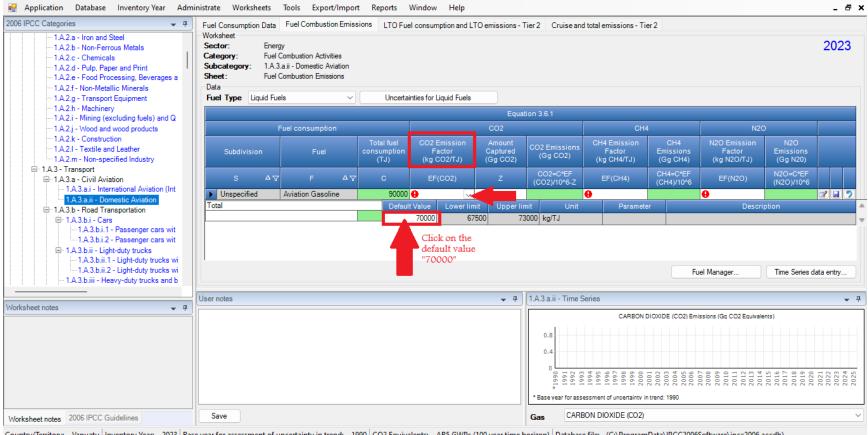
1.9 under the "Consumption Unit" click on the drop-down menu and select "TJ" (See illustration below).

👷 Application Database Inventory Year Adm	IPCC Categories ▼ # Fuel Consumption Data Fuel Consumption Data Fuel Consumption and LTO emissions - Tier 2 Cruise and total emissions - Tier 2 1.4.2.b - Non-Ferrore Metals Fuel Consumption Data Fuel Consumption and LTO emissions - Tier 2 Cruise and total emissions - Tier 2 1.4.2.b - Non-Ferrore Metals Fuel Consumption Data Fuel Consumption and LTO emissions - Tier 2 2023 1.4.2.b - Non-Metalitic Minerals Fuel Consumption Data Fuel Consumption Data Subcategory: 1.4.3.b / Domestic Availon 1.4.2.b - Non-Metalitic Minerals Fuel Consumption Data Fuel Consumption Data Fuel Consumption Data 1.4.2.b - Non-Metalitic Minerals Fuel Consumption Data Fuel Consumption Data Fuel Consumption 1.4.2.b - Non-Metalitic Minerals Fuel Consumption Data Fuel Consumption Consumption 1.4.2.b - Non-Paperide Industry Fuel Consumption Consumption Consumption Consumption 1.4.2.b - Non-Paperide Industry Fuel Consumption Fuel Consumption Consumption Consumption 1.4.2.b - Non-Paperide Industry Fuel Consumption Consumption Consumption Consumption 1.4.3.b - Asia - Intemiscional Avation Subcategory Fuel		- 8 ×					
		stion Emissions LTO Fuel consump	tion and LTO emissions -	Tier 2 Cruise and total emission	ıs - Tier 2			
	Sector: Energy Category: Fuel Combustion Act Subcategory: 1.A.3.a.ii - Domestic Sheet: Fuel Consumption D Data	Aviation lata						2023
			Equa	ation 3.6.1				
− 1.A.2.k - Construction − 1.A.2.I - Textile and Leather − 1.A.2.m - Non-specified Industry □ 1.A.3 - Transport	Subdivision	Fuel	(Mass, Volume or	Consumption Unit	(TJ/Unit)			
	S AT	7 F Δ7	С	U T	CF	TC = C * CF		
	* Unspecified	Gas/Diesel Oil			43	460741.216) X
	*		G	ig (Auto CF)			2	
	Total					100741 010		
 1.A.3.b.ii - Light-duty trucks 1.A.3.b.ii.1 - Light-duty trucks wi 1.A.3.b.ii.2 - Light-duty trucks wi 1.A.3.b.iii.2 - Light-duty trucks and b 				Select "IJ"	Fuel		ne Series da	ta entry
	User notes		⊸ д	1.A.3.a.ii - Time Series				→ ₽
worksneet notes 🗸 🗸 4				CAF	RBON DIOXIDE (CO2) Emiss	ions (Gq CO2 Equivalents)		
				0.8 0.4 0.661 1661 1661 * Base year for assessment of uncert		2008 2019 2011 2012 2012 2013 2015 2015 2016	2017 2018 2019 2020	2021 2022 2023 2023 2024 2025
Worksheet notes 2006 IPCC Guidelines	Save			Gas CARBON DIOXIDE (CO2)			~

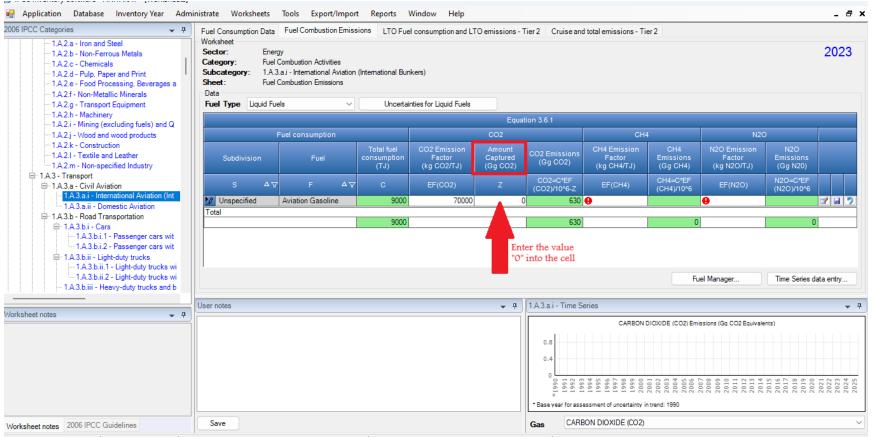
2.0 click on the "Fuel Combustion Emissions "tab (See illustration below).


🖳 Application Database Inventory Year Adm	ninistrate Worksheets Tools Exp	port/Import Reports Wind	ow Help				-	ðх		
		ustion Emissions LTO Fuel con	sumption and LTO emissions	- Tier 2 Cruise and total emission	ns - Tier 2					
 1.A.2.c - Chemicals 1.A.2.d - Pulp, Paper and Print 1.A.2.e - Food Processing, Beverages a 1.A.2.f - Non-Metallic Minerals 1.A.2.g - Transport Equipment 1.A.2.h - Machinery 	Worksheet Sector: Energy Category: Fuel Combustion Subcategory: 1.A.3.ai - Inter Sheet: Fuel Consumption Data Fuel Type Fuel Type Liquid Fuels	tion (International Bunkers) Click on the "Fuel Combustion Emiss	ions" tab				202	23		
		Energy Energy 2023 ion (International Bunkers) Fuel Consumption Fuel Consumption Click on the "Fuel Combustion Emissions" tab Consumption 1000 Equation 36.1 Equation 36.1 Subdivision Fuel Consumption (Mass, Volume or Energy Unit) Consumption Unit Consumption (TJ/Unit) (NCV) S AV F AV C U V CF TC = C * CF Image: Consumption (TG = C * CF)								
1A2b - Non-Ferrous Metals 1A2b - Non-Ferrous Metals 120 - Consumption and circulations and ciredifficulations and circle and consumption and circle										
2005 IPCC Categories Image: Cate		x								
2006 IPCC Categories ■ 1.22 - Non-Ferrous Metals • -1.22 - Non-Ferrous Metals • -1.22 - Non-Serrous • 1.22 - Non-Metallic Minerals • -1.22 - Non-Metallic Minerals • 1.22 - Non-Metallic Minerals • • • • • •										
	Total									
DB RCC Categories Image: Consumption Data Fuel Conduction Emissions L10 Fuel consumption and L10 emissions - Tier 2 Cruise and total emissions - Tier 2 F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala Consumption Internation Barline F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b Hon-Farora Metala F142.b	ìme Series data entry	(
	User notes		▼ ₽	1.A.3.a.i - Time Series				• 4		
Worksheet notes 👻 👎][-i (0- 000 Ei				
				*1990 1991 1992 1995 1995 1995 1995 1995	1999 2000 2001 2003 2003 2005 2005 2005		2017 2018 2019 2020 2021 2021 2023	2024 2025		
Worksheet notes 2006 IPCC Guidelines	Save			Gas CARBON DIOXIDE	(CO2)			~		
Country/Territory: Vanuatu Inventory Year: 2023 Ba	se year for assessment of uncertainty in	trend: 1990 CO2 Equivalents	AR5 GWPs (100 year time	e horizon) Database file: (C:\Pro	ogramData\IPCC2006S	oftware\ipcc2006.accdl	b)			

2.1 Under the Subdivision tab in the table click on the drop-down menu and select "Unspecified", then under the "Fuel" tab, click on the drop-down menu and select "Aviation Gasoline" (See illustration below).



2.2 Click on the drop-down menu under the "CO₂ Emission Factor (kg CO₂/TJ)" tab and select the default value "70000" (See illustration below).



2.3 Under the tab "Amount Captured (Gg CO₂)" enter the value "0" (See illustration below).

2.4 Under the tab "CH₄ Emission Factor (kg CH₄/TJ)" click on the drop-down menu and select the default value "0.5" (See illustration below).

2006 IPCC Categories 🗢 🔻	Fuel Consumption Data	Fuel Combustion Emiss	sions LTO Fue	I consumption and L	FO emissions -	Tier 2 Cruise and	l total emissions - Tie	r 2			
	Subcategory: 1.A.3	Combustion Activities .a.i International Aviation Combustion Emissions		ikers) nties for Liquid Fuels							2023
					Equa	tion 3.6.1					
	F	Fuel consumption			CO2		CH4		N20		
 1.A.2.k - Construction 1.A.2.I - Textile and Leather 1.A.2.m - Non-specified Industry 	Subdivision	Fuel	Total fuel consumption (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)	
 □ 1.A.3 - Transport □ 1.A.3.a - Civil Aviation □ 1.A.3.a.i - International Aviation (Int 	S △▽	F 쇼 ▽ Aviation Gasoline	C 9000	EF(CO2)	z	CO2=C*EF (CO2)/10^6-Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6	3 9 9
	Total	Aviation Gasonne	Defaul		Prophil International Contraction	line in the second second	€ (I∨ Paramete		Descr	States and a state of the state	
 1.A.3.b.i - Cars 1.A.3.b.i.1 - Passenger cars wit 1.A.3.b.i.2 - Passenger cars wit 1.A.3.b.ii - Light-duty trucks 1.A.3.b.ii.1 - Light-duty trucks wi 1.A.3.b.ii.2 - Light-duty trucks wi 1.A.3.b.ii - Heavy-duty trucks and b 			- 1	Select the def value "0.5"	ault			FL	uel Manager	Time Series da	ata entry
	User notes				↓ ₽	1.A.3.a.i - Time Se	eries				+
√orksheet notes						*	CARBON D	2001 2002 2003 2005 2005 2005	issions (Gq CO2 Equival 000 2 000 2 00 0 00 0 0 0 0 0		2021 2022 2023 2024 2024
								1947 BO			

2.6 Click on the drop-down menu under the tab " N_2O Emission Factor (kg N_2O/TJ)" and select the default value "2" (See illustration below).

06 IPCC Categories 🗸 🗸	I der consumption Data	Fuel Combustion Emiss	sions LTO Fue	el consumption and L1	O emissions -	Tier 2 Cruise and	total emissions - Tie	r 2			
	Subcategory: 1.A.3	gy Combustion Activities J.a.i - International Aviation Combustion Emissions	(International Bur	nkers)							2023
···· 1.A.2.g - Transport Equipment	Fuel Type Liquid Fu	els ~	Uncertai	inties for Liquid Fuels							
1.A.2.h - Machinery 1.A.2.i - Mining (excluding fuels) and Q					Equa	ition 3.6.1					
- 1.A.2.j - Wood and wood products		Fuel consumption			CO2		CH4		N2O)	
-1.A.2.k - Construction -1.A.2.I - Textile and Leather 1.A.2.m - Non-specified Industry	Subdivision	Fuel	Total fuel consumption (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)	
- 1.A.3 - Transport - 1.A.3.a - Civil Aviation	S AV	F AV	с	EF(CO2)		CO2=C*EF (CO2)/10^6-Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6	
 1.A.3.a.i - International Aviation (Int 1.A.3.a.ii - Domestic Aviation 	📝 Unspecified	Aviation Gasoline	9000	70000	(0.5	0.0045	θ (~)	
= 1.A.3.b - Road Transportation	Total		Defaul	t Value Lower lim	it Upperli 0.6	mit Unit 5 kg/TJ	Parameter Uncontrolled		Descrip	otion	
□ 1.A.3.b.i.2 - Passenger cars wit □ 1.A.3.b.ii - Light-duty trucks □ 1.A.3.b.ii Light-duty trucks wi □ 1.A.3.b.ii.2 - Light-duty trucks wi □ 1.A.3.b.iii.2 - Light-duty trucks and b			_1	Click on the default value	"2"			Fu	el Manager	Time Series d	ata entry
	User notes				→ 쿠	1.A.3.a.i - Time Se	eries				
rksheet notes 👻 🔻							CARBON D	IOXIDE (CO2) Emis	ssions (Gq CO2 Equivaler	nts)	
						0.8	4 U Q V Q Q Q -	0.02 4 0.9	010 011 011 012 013 013 013	112 113 20	1 2 8 4
						* * *	essment of uncertainty in		201220122012201220122012201220122012201	2 2 2 2 2 2	202

DOMESTIC AVIATION

2.7 Under the "20006 IPCC Categories" tab select 1.A.3.a.ii – Domestic Aviation

2006 IPCC Categories 🚽 🗸	Fuel Consumption Data	Fuel Combustion Emis	sions LTO Fue	el consumption and L1	TO emissions - 1	Tier 2 Cruise and	I total emissions - Tie	er 2				
	Subcategory: 1.A	rgy I Combustion Activities .3.a.ii - Domestic Aviation I Combustion Emissions									2023	
	Fuel Type Liquid F	uels ~	Uncertai	inties for Liquid Fuels								
					Equat	tion 3.6.1						
		Fuel consumption			CO2		CH4		N2C)		
- 1.A.2.k - Construction - 1.A.2.I - Textile and Leather - 1.A.2.m - Non-specified Industry	Subdivision	Fuel	Total fuel consumption (TJ)	CO2 Emission Factor (kg CO2/TJ)	Amount Captured (Gg CO2)	CO2 Emissions (Gg CO2)	CH4 Emission Factor (kg CH4/TJ)	CH4 Emissions (Gg CH4)	N2O Emission Factor (kg N2O/TJ)	N2O Emissions (Gg N20)		
i≕ 1.A.3 - Transport i≕ 1.A.3.a - Civil Aviation	s Ar	7 F 45	с	EF(CO2)	Z	CO2=C*EF (CO2)/10^6-Z	EF(CH4)	CH4=C*EF (CH4)/10^6	EF(N2O)	N2O=C*EF (N2O)/10^6		
- 1.A.3.a.i - International Aviation (Int 1.A.3.a.ii - Domestic Aviation	b ll if sd	Aviation Gasoline	90000	70000	0	6300	0.5	0.045	2	0.18	28.	
I.A.3.b - Road Transportation		on the 1.A.3.ii ~ Domestic Aviation 90000 6300 0.045										
	"Click on the 1.4	A.3.ii ~ Domestic Av	iation 90000			6300		0.045		0.18		
⊜- 1.A.3.b.i - Cars	"Click on the 1.4	1.3.ii ~ Domestic Av	ation 90000			6300			el Manager	0.18 Time Series dat	ta entry	
□ 1.A.3.b.i - Cars □ 1.A.3.b.i - Passenger cars wit □ 1.A.3.b.i.2 - Passenger cars wit □ 1.A.3.b.ii.1 - Light-duty trucks □ 1.A.3.b.ii.1 - Light-duty trucks wi □ 1.A.3.b.ii.2 - Light-duty trucks wi □ 1.A.3.b.ii - Heavy-duty trucks and b	"Click on the 1.4	1.3.ii ~ Domestic Av	lation 90000		→ #	6300 (1.A.3.a.ii - Time S	ieries					
 ⇒ 1.A.3.b.i - Cars ⇒ 1.A.3.b.i.1 - Passenger cars wit ⇒ 1.A.3.b.ii.2 - Passenger cars wit ⇒ 1.A.3.b.ii.1 - Light-duty trucks ⇒ 1.A.3.b.ii.1 - Light-duty trucks wi ⇒ 1.A.3.b.ii.2 - Light-duty trucks wi 		A.3.ii ~ Domestic Av	lation 90000		• #			Fu		Time Series dat	ta entry	
 ⇒ 1.A.3.b.i - Cars → 1.A.3.b.i.1 - Passenger cars wit → 1.A.3.b.i.2 - Passenger cars wit ⇒ 1.A.3.b.ii.1 - Light-duty trucks → 1.A.3.b.ii.1 - Light-duty trucks wi → 1.A.3.b.ii.2 - Light-duty trucks wi → 1.A.3.b.iii - Heavy-duty trucks and b 		1.3.ii ~ Domestic Av	ation 90000		• ţ	(1.A.3.a.ii - Time S 8000 4000 2000 0 0 0 0 0 0 0 0 0 0 0 0		Fut	el Manager	Time Series dat	-	

Country/Territory: Vanuatu Inventory Year: 2023 Base year for assessment of uncertainty in trend: 1990 CO2 Equivalents: AR5 GWPs (100 year time horizon) Database file: (C:\ProgramData\\PCC2006Software\ipcc2006.accdb)

2.7 Repeat steps 1.6 to 2.6

Figure 1: Displays the decision tree employed for selecting the method approach for actual CO2 from fuel combustion in Water-borne navigation emissions. The Decision implemented during this operation are indicated by the red arrows.

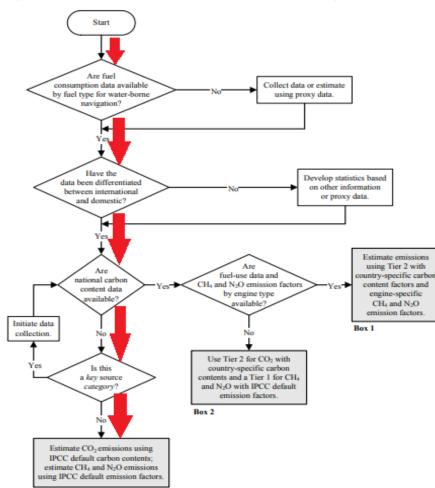
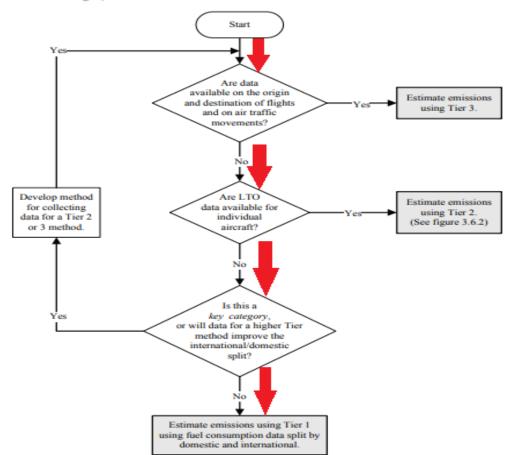
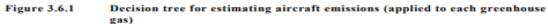


Figure 3.5.1 Decision tree for emissions from water-borne navigation

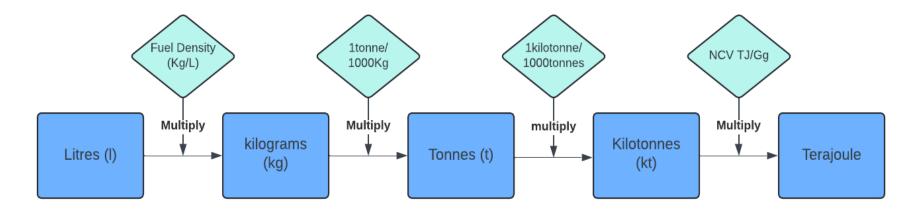
Box 3





NOTE: Due to national Circumstances (Lack of resources) Vanuatu does not have yet reliable country-specific emission factors and parameters and therefore, is applying the default parameters and Tier 1 method to estimate Emissions.

Figure 2: Displays the decision tree employed for selecting the method approach for actual emissions (Applied to each greenhouse gas) from fuel combustion in aircraft emissions. The Decision implemented during this operation are indicated by the red arrows.

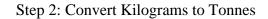


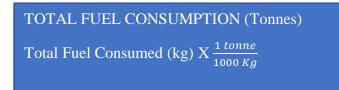
NOTE: Due to national Circumstances (Lack of resources) Vanuatu does not have yet reliable country-specific emission factors and parameters and therefore, is applying the default parameters and Tier 1 method to estimate Emissions.

STEPS FOR ESTIMATING TOTAL FUEL CONSUMED IN TERAJOULES

Figure 3.: The step-by-step conversion of liters to terajoules is shown below

Step 1 Convert Liters to Kilograms


TOTAL FUEL CONSUMED (Kg)


Total Fuel Consumed (L) X Fuel Density (Kg/L)

Step 3: Convert Tonnes to Kilotonnes(kt)

TOTAL FUEL CONSUMED (KILOTONNES) Total Fuel Consumed (tonnes) $X \frac{1 \text{ Kilotonne}}{1000 \text{ tonnes}}$

Step 4: Convert Kilotonnes (kt) to Terajoules

TOTAL FUEL CONSUMED (TERAJOULES)

Total Fuel Consumed (terajoules) X NCV (TJ/Gg)

WATER-BORNE NAVIGATION EQUATION

EQUATION 3.5.1

WATER-BORNE NAVIGATION EQUATION

Emissions Fuel = \sum (Consumed_{ab} Emission Factor_{ab})

Where:

Where: a = fuel type (diesel, gasoline, LPG, bunker, etc.) (See 2006 IPCC Guidelines, Vol. 2, Ch. 3, Pg. 47, Equation 3.5.1).

b = water-borne navigation type (i.e., ship or boat, and possibly engine type.) (Only at Tier 2 is the fuel used differentiated by type of vessel so b can be ignored at Tier 1) (See 2006 IPCC Guidelines, Vol. 2, Ch. 3, Pg. 47, Equation 3.5.1).

1.3.3 ROAD TRASNPORT TIMESERIES

Where:

NA = Not Applicable NU= Needs Updating

Vanuatu's base year is 1994, even though introduction of the first vehicles was in the late 1950s. The most recent national inventory states that only ghg emissions from 2007 to 2017 were computed using the Tier 1 IPCC methodology, default IPCC assumptions, and default EF taken from reports. The Emission values require updating from 1994 - 2006 and $2018-2023^6$.

⁶ Sources: See 2006 IPCC Guideline Vol 2 Chapter 3, Table 3.2.1 and Table 3.2.2 (Waldron, et al., 2006) and, The Republic of Vanuatu First Biennial Update Report, UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE (MOCC, 2021).

Table 9: Total CO2 emissions (gg) and emission factor for each fuel type from 1994 to 2023.

Item	Units	Fuel Type	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
		Motor Gasoline	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300	69300
		Gas/ Diesel Oil	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100	74100
EF	(kg/TJ)	Liquefied Petroleum Gase	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100	63100
		Lubricants	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300	73300
Emission	Kg	NA	NU	18.93	29.28	33.08	52.09	62.04	<mark>63.9</mark> 5	66.72	69.56	72.14	77.96	86.1	NU	NU	NU	NU	NU	NU												
Method	NA	NA	Tier 1	Tier 1	Tier 1	Tier l	Tier 1	Tier 1	Tier l	Tier 1																						

Table 10: Total CH4 emission (gg) and emission factor for each fuel type from 1994 to 2023.

Item	Units	Fuel Type	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
		Motor Gasoline -Unc	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
		Motor Gasoline –Oxio	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
		Motor Gasoline – Low	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
EF	(kg/TJ)	Gas / Diesel Oil	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
		Liquified petroleum g	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62
Emissio	Kg	NA	NU	0.001	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	NU	NU	NU	NU	NU	NU												
Method	NA	NA	Tier 1																													

Table 11: Total N2O emission (gg) and emission factor for each fuel type from 1994 to 2023.

Item	Units	Fuel Type	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
		Motor Gasoline -Uncor	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
		Motor Gasoline –Oxida	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
		Motor Gasoline -Low 1	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
EF	(kg/TJ)	Gas / Diesel Oil	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
		Liquified petroleum gas	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62
Emissio	r Kg	NA	NU	0.001	0.002	0.002	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.005	NU	NU	NU	NU	NU	NU												
Method	NA	NA	Tier 1																													

UNCERTAINTIES

Road Transportation

In the 2006 IPCC Guideline Volume 2, Chapter 3 states that CO_2 , CH_4 and N_2O contribute to approximately 97, where 2-3 and 1% of CO_2 -equivalent emissions from the road transportation sector. N_2O and CH_4 have a much higher uncertainty compared to CO_2 , however, CO_2 dominates the emissions from road transportation. With the use of local data, uncertainty will be reduced with the bottom-up approach (Waldron, et al., Chapter 3 Mobile Combustion , 2006).

Emission Factor Uncertainty

The CO₂ uncertainty from the emission factor is less than 2% when national values are used. In Table 3.2.1, Vol 2 Chapter 3, the default CO₂ emission factor for road transportation have an uncertainty of 2%-5% due to uncertainty within the fuel composition. The use of fuel blends (involving adulterated or biofuels) can increase the uncertainty in the emission factors considering the uncertain in the composition of the blend.

The uncertainties for CH_4 and N_2O emission factors are relatively high (especially N_2O) and are expected to be a factor of 2-3. This depends on several factors:

- Uncertainties in fuel composition (including the possibility of fuel adulteration) and Sulphur content.
- Uncertainties in fleet age distribution and other characterization of the vehicle stock, including cross-border effects the technical characteristics of vehicles from another country that take on fuel may be covered by technology models.
- Uncertainties in maintenance patterns of the vehicle stock.
- Uncertainties in combustion conditions (climate, altitude) and driving practices, such as speed, proportion of running distance to cold starts, or load factors (CH₄ and N₂O).
- Uncertainties in application rates of post-combustion emission control technologies (e.g. three-way catalyst).
- Uncertainties in the use of additives to minimize the aging effect of catalysts.
- Uncertainties in operating temperatures (N₂O); and,
- Uncertainties of test equipment and emission measurement equipment (Waldron, et al., Chapter 3 Mobile Combustion, 2006).

Climate Action Transparency

Estimation of uncertainty should be based on published literature from which emission factors are derived. At the very least, some of the types of uncertainties that are discussed in published literature and should be considered when developing national emission factors derived from empirical data are:

- A range in the emission factor of an individual vehicle, represented as a variance of measurements, due to variable emissions in different operating conditions (e.g. speed, temperature); and
- Uncertainty in the mean of emission factors of vehicles within the same vehicle class.

In addition, the sample size of vehicles measured may have been very small, or even a larger sample of measurements may not represent the national fleet. Test driving cycles cannot fully capture real driving behavior. At least in some emission factor studies, cold start emissions are now tested separately from running emissions. Countries may be able to make country-specific adjustments. However, these adjustments will necessitate more data collection with their own uncertainties.

Activity Data Uncertainties

The main source of uncertainty for the emission estimate is activity data. Activity data can be expressed in energy units (such as Tj) or in other units used for other purposes such as P/T-kilometer, Vehicle Stocks, Trip Length Distribution, Fuel Efficiency, etc. Potential sources of uncertainty (generally around +/-5%) include:

- Uncertainties in national energy surveys and data returns
- Misclassification of fuels
- Misclassification in vehicle stock
- Lack of completeness (fuel not recorded in other source categories may be used for transportation purposes)
- and
- Uncertainty in the conversion factor from one set of activity data to another (e.g. from fuel consumption
- data to person-/ton-kilometers, or vice versa, see above).

Reducing uncertainty can be achieved through the stratification of activity data, especially when they can be linked to outcomes obtained from a top-down fuel use approach.

When estimating CH_4 and N_2O emissions, it is necessary to utilize different tiers and corresponding sets of activity data. It is considered good practice to ensure that the top-down and bottom-up approaches align, and any deviations should be thoroughly documented and explained (refer to 2006 IPCC Guideline Vol 2 Chap 3 Section 3.2.1.4 Completeness). In the case of these gases, the uncertainty in emission factors will have a greater impact, while the uncertainty in activity data can be assumed to be like that of CO_2 (Waldron, et al., Chapter 3 Mobile Combustion , 2006).

Water-borne Navigation

Emission factors

 CO_2 emission factors for fuels are typically well determined based on the carbon content of the fuel, according to expert judgment. For instance, the default uncertainty value for diesel fuel is approximately \pm -1.5 percent, while for residual fuel oil it is \pm -3 percent. However, when it comes to non-CO₂ emissions, the uncertainty is much higher. The uncertainty for the CH₄ emission factor can reach as high as 50 percent, and for the N₂O emission factor, it can range from about 40% below to about 140% above the default value.

Activity data

The uncertainty in estimating water-borne navigation emissions largely stems from the challenge of distinguishing between domestic and international fuel consumption. When complete survey data is available, the uncertainty may be low, around \pm -5 percent. However, for estimations or incomplete surveys, the uncertainties can be significant, around \pm -50 percent. It is important to note that the level of uncertainty will vary greatly from country to country and cannot be easily generalized. The use of global data sets may prove beneficial in this area, and it is anticipated that reporting will improve for this category in the future (Waldron, et al., Chapter 3 Mobile Combustion , 2006).

Civil Aviation

Emission factors

The carbon dioxide (CO₂) emission factors must fall within a range of ± 5 percent, as they solely depend on the carbon content of the fuel and the fraction that undergoes oxidation. However, there is a significant level of uncertainty involved in calculating CO₂ emissions due to the uncertainties in the activity data discussed earlier. In Tier 1, the uncertainty in the methane (CH₄) emission factor can range from -57 to +100 percent. Similarly, the uncertainty in the nitrous oxide (N₂O) emission factor can range from -70 to +150 percent. Furthermore, the CH₄ and N₂O emission factors vary depending on the technology used, and using a single emission factor for aviation is a substantial simplification.

Activity Data

The accuracy of the data collected on domestic and international aviation will greatly impact the uncertainty in reporting. When complete survey data is available, the uncertainty can be minimal, less than 5 percent. However, estimates or incomplete surveys may lead to larger uncertainties, possibly doubling for the domestic sector. The uncertainty ranges mentioned are based on input from experts trying to estimate the 95 percent confidence interval around the central estimate. It is important to note that uncertainty levels will differ significantly from one country to another. The utilization of global data sets, along with radar support, could prove beneficial in enhancing reporting accuracy in this field, with expectations for improvements in the future.

Reference Approach

If the Reference Approach is the primary accounting method for the CO_2 from fuel combustion, then it is advisable to conduct an uncertainty analysis.

Activity Data

The total uncertainty in activity data consists of both systematic and random errors. Most developed countries compile balances of fuel supply, which helps in identifying systematic errors. In such cases, systematic errors are expected to be minimal. However, incomplete accounting may occur in areas where individuals and small producers extract fossil fuel (mainly coal) for personal use without it being included in the formal accounting system. Experts suggest that uncertainty due to errors in the activity data of countries with well-established statistical systems is likely around $\pm 5\%$ for a specific fuel. For countries with less developed energy data systems, this uncertainty could be significantly higher, possibly around $\pm 10\%$ for a specific fuel.

FICAT Initiative for Climate Action Transparency

Carbon content and net calorific values

The uncertainty related to carbon content and net calorific values arises from the accuracy of measurement and the variability in the fuel supply source and sampling quality. As a result, errors are predominantly random. The uncertainty is primarily influenced by the variability in fuel composition. For traded fuels, the uncertainty is expected to be lower compared to non-traded fuels.

Oxidation factors

There are no standard uncertainty ranges for oxidation factors. Uncertainties related to oxidation factors can be determined by gathering data from major consumers regarding the efficiency of combustion in the specific equipment they utilize (Treanton, et al., CHAPTER 6 REFERENCE APPROACH, 2006).

1.3.4 QAULITY ASSURANCE AND QUALITY CONTROL (QA/QC)

Quality assurance and quality control (QA/QC), a thorough evaluation process, played a crucial role in enhancing transparency, consistency, comparability, completeness, and accuracy of the energy manual.

Comparison of emissions using alternative methods

To evaluate CO_2 emissions, the inventory compiler must compare estimates derived from both fuel statistics and vehicle kilometers traveled data. Any discrepancies in emission estimates should be investigated and clarified. The outcomes of these comparisons should be documented internally. Adjusting the following assumptions could help reconcile any disparities found between the methods:

- Use of off-road/non-transportation fuels
- Annual average vehicle mileage
- Vehicle fuel efficiency
- Breakdown of vehicles by type, technology, age, etc.
- Utilization of oxygenates, biofuels, or other additives
- Fuel consumption statistics
- Fuel sold or used

FICAT Initiative for Climate Action Transparency

Review of emission factors

When default emission factors are utilized, the inventory compiler should confirm their applicability and relevance to the respective categories. Whenever feasible, these default factors should be compared against local data to further validate their suitability. For CH_4 and N_2O emissions, the inventory compiler must ensure that the local factors derived from original data sources are appropriate for the specific category. Additionally, accuracy checks on data acquisition and calculations should be conducted. If default factors were used for estimating N_2O emissions, the inventory compiler should ensure that the revised emission factors specified in Table 3.2.3, Chapter 3: Mobile Combustion of the 2006 IPCC Guidelines, were applied in calculations.

Activity data verification

The inventory compiler should scrutinize the sources of activity data to ensure their relevance and applicability to the category. Section 3.2.1.3, Chapter 3: Mobile Combustion of the 2006 IPCC Guidelines, outlines best practices for validating activity data. Where possible, the compiler should compare current data with historical activity data or model outputs to identify potential anomalies. Special attention should be given to ensuring the reliability of activity data pertaining to minor fuel distributions, off-road and on-road traffic, and illegal transportation of fuels into or out of the country. The compiler must also prevent double counting of agricultural and off-road vehicles.

External review

To evaluate the effectiveness of the quality control program, the inventory compiler should conduct an impartial external review of emission inventory calculations, assumptions, and documentation. This peer review should involve expert evaluators familiar with the specific source category and knowledgeable about inventory requirements. Given the significant uncertainties associated with default factors, particularly for CH_4 and N_2O emissions, the development of accurate emission factors is crucial.

1.4 IMPROVEMENT PLAN

1.4.1: VANUATU'S CURRENT INVENTORY PROCESS.

The energy sector is the predominant emitter of GHGs in Vanuatu. The Energy sector GHG emissions includes emissions from the fuel (fossil fuel or petroleum) combustion activity from Energy Industry (electricity generation), Manufacturing Indus tries and Construction, Transportation (Road and Domestic aviation and water borne navigation), and other sectors (Commercial, Institutional and residential); in the nutshell the energy sector emissions are mainly at tributed from the combustion of fossil fuel or petroleum.

Vanuatu is net importer of the petroleum product; hence the GHG emission calculation of overall emissions in this sector was relatively straightforward once the imported quantity of fossil fuel was known (activity data). The difficulty for Vanuatu has been in terms of the sectoral breakdown of emissions, given that there were no energy balances for the country available; further the sectoral fuel sales forthcoming from the fuel suppliers/retailers are not available. An attempt was made using some available data from stakeholders and proxy data to estimate the sectoral emissions.

The sectoral data was entered into IPCC Inventory Software (Version 2.54- June 2017) as per the requirement of standard IPCC sectoral model, the IPCC tool was customized for specific requirement of GHG emissions calculation for Vanuatu i.e. by using the default emission factors for energy conversion and IPCC AR5 GHG emission factors.

The result gives a sectoral breakdown of Vanuatu's energy sector CO2 emissions for the period 2007 to 2015. The IPCC inventory software calculates direct CO2 emissions and nonCO2 emissions (CH4 and N2O) for this sector; further other gases like SOx, NOx and NMVOC were negligible and outside the estimated accuracy of the main CO2, CH4 and N2O emissions⁷.

⁷ <u>Vanuatu Third National Communication Report.pdf (unfccc.int)</u>

Energy Sector Emissions (in Gg CO2e): 2007 - 2015

Categories			Net C	CO2 Emissi	O2 Emissions, (CO2 Equivalents Gg)				
Categories	2007	2008	2009	2010	2011	2012	2013	2014	2015
1 - Energy	60.42	92.31	95.10	119.66	127.53	114.87	121.54	128.55	129.55
1.A - Fuel Combustion Activities	60.42	92.31	95.10	119.66	127.53	114.87	121.54	128.55	129.55
1.A.1 - Energy In-dustries	27.73	42.05	39.47	38.02	38.81	35.88	31.68	35.74	32.19
1.A.2 - Manufactur-ing Indus- tries and Con-struction	9.85	16.26	16.21	23.67	20.91	8.96	17.40	17.92	19.94
1.A.3 - Transport	18.93	29.28	33.08	52.09	62.04	63.95	66.72	69.56	72.14
1.A.4 - Other Sec-tors	3.92	4.72	6.34	5.88	5.77	6.08	5.74	5.33	5.28
1.B - Fugitive emis-sions from fuels				NO (1	Not-Occu	rring)			
1.C - Carbon dioxide Transport and Storage				NO (1	Not-Occu	rring)			
Total GHG Emissions, excl. Removals	517.41	556.06	435.65	566.82	587.79	581.13	545.30	604.26	610.20
% Share of Energy Sec-tor in Total GHG emis-sions	12%	17%	22%	21%	22%	20%	22%	21%	21%

1.4.2: AREAS IDENTIFIED FOR IMPROVEMENT AND IDENTIFIED GAPS

The national energy balance of Vanuatu needs to be updated on a regular basis in order for reporting to be precise and consistent when calculating GHG emissions. In Vanuatu, key uncertainties are associated with data availability, missing data, lack of comprehensive in formation, data archiving and lack of country specific emission factors. It is recognized that having country specific emission factors and more detailed activity data will help reduce uncertainty in future inventory. For example, in the energy sector there is good data available on fuel imports into the country but there is lack of information on end usage (Ministry of Climate Change, 2020).

FICAT Initiative for Climate Action Transparency

1.4.3: PROPOSED IMPROVEMENT ACTIONS

There are few improvement actions that needs to be done in the energy sector to ensure reporting is accurate.

The following needs to be address:

- create/update National Energy Balance for Vanuatu
- Biomass and Biofuel Consumption: The Biomass and Biofuel (coconut oil) consumption data collection and QA/QC procedure will be implemented to include these fuels in the future inventory reports.
- Well established database.
- Improve archiving of data
- Energy sector needs country specific emission factor.

Addressing these points above will contribute in accurate calculation of GHG emissions and also provide clear reporting relating to the country's inventory.

REFERENCE

(n.d.).

- Dong, H., Joe, M., & McAllister, T. (2006). CHAPTER 4: EMISSIONS FROM LIVESTOCK AND MANURE MANAGEMENT.
- Goodwin, J., Woodfield, M., Ibnoaf, M., Koch, M., & Yan, H. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 2: Approaches to Data Collection. Institute for Global Environmental Strategies (IGES).
- IPCC Guidelines for National Greenhouse Has Inventories. (1996). Chapter 1: ENERGY. *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual*. Retrieved from IPCC.
- Ministry of Climate Change, M. (2020). *The Republic of Vanuatu Third National Communication to the The United Nations Framework Convention on Climate Change*. Port Vila: Ministry of Climate Change.
- MOCC. (2021). *The Republic of Vanuatu First Biennal Update Report, UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE (UNFCCC).* Port Vila: Ministry of Climate Change Adaptation, Meteorology and Geo-Hazards, Energy, Environment and National Disaster Management.
- PASO. (2023). Case Study Vanuatu ENSURING VANUATU'S AIRCRAFT FLY SAFELY WITH OSCA. Retrieved from Pacific Aviation Safety Office: https://paso.aero/case-study/case-study-vanuatu/
- Treanton, K., Ibitoye, F., Kainou, K., Olivier, J. G., Pretel, J., Simmons, T., & Yang, H. (2006). Chapter 6 Reference Approach. 2006 *IPCC Guidelines for National Greenhouse Gas Inventories*.
- Treanton, K., Ibitoye, F., Kainou, K., Olivier, J. G., Pretel, J., Simmons, T., & Yang, H. (2006). CHAPTER 6 REFERENCE APPROACH. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2.
- Waldron, C. D., Harnisch, J., Lucon, O., Mckibbon, R. S., Saile, S. B., Wagner, F., & Walsh, M. P. (2006). Chapter 3 Mobile Combustion. 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
- Waldron, C. D., Harnisch, J., Lucon, O., McKibbon, R. S., Saile, S., Wagner, F., & Walsh, M. (2006). *Chapter 3 Mobile Combustion*. 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

ANNEX

Table 2.2.1.1: Tier 1 method default CO₂ emission factor and uncertainty ranges

Fuel Type	Default (kg/TJ)	Lower	Upper				
Motor Gasoline	69 300	67 500	73 000				
Gas/ Diesel Oil	74 100	72 600	74 800				
Liquefied Petroleum Gases	63 100	61 600	65 600				
Kerosene	71 900	70 800	73 700				
Lubricants b	73 300	71 900	75 200				
Compressed Natural Gas	56 100	54 300	58 300				
Liquefied Natural Gas	56 100	54 300	58 300				
Source: Table 1.4 in the Introduction chapter of the Energy Volume.							

Notes:

 ^a Values represent 100 percent oxidation of fuel carbon content.
 ^b See Box 3.2.4 Lubricants in Mobile Combustion for guidance for uses of lubricants.

Table 2.2.1.2: Tier 1 method default CH₄ and N₂O emission factor and uncertainty ranges

Fuel Type/Representative Vehicle Category		CH4 (kg /TJ)			N2O (kg /TJ)		
	Default	Lower	Upper	Default	Lower	Upper	
Motor Gasoline -Uncontrolled ^(b)	33	9.6	110	3.2	0.96	11	
Motor Gasoline –Oxidation Catalyst ^(c)	25	7.5	86	8.0	2.6	24	
Motor Gasoline –Low Mileage Light Duty Vehicle Vintage 1995 or Later ^(d)	3.8	1.1	13	5.7	1.9	17	
Gas / Diesel Oil ^(e)	3.9	1.6	9.5	3.9	1.3	12	
Natural Gas ^(f)	92	50	1 540	3	1	77	
Liquified petroleum gas (g)	62	na	na	0.2	na	па	
Ethanol, trucks, US ^(h)	260	77	880	41	13	123	
Ethanol, cars, Brazil (i)	18	13	84	na	na	na	

Sources: USEPA (20046), EEA (2005a), INO (2005) and Borsan (2005) CETESB (2004 & 2005) with assumptions gives below. Uncertainty ranges were derived from data in Lipman and Delucchi (2002), except for ethanol in cars.

(a) Except for LPG and ethanol cars, default values are derived from the sources indicated using the NCV values reported in the Energy Volume Introduction chapter; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption values: 10 km/l for motor gasoline vehicles; 5 km/l for diesel vehicles; 9 km/l for natural gas vehicles (assumed equivalent to gasoline vehicles); 9 km/l for ethanol vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for N_2O and CH_6 .

(b) Motor gasoline uncontrolled default value is based on USEPA (2004b) value for a USA light duty gasoline vehicle (car) – uncontrolled, converted using values and assumptions described in table note (a). If motorcycles account for a significant share of the national vehicle population, inventory compilers should adjust the given default emission factor downwards.

(c) Motor gasoline – light duty vehicle oxidation catalyst default value is based on the USEPA (2004b) value for a USA Light Duty Gasoline Vehicle (Car) – Oxidation Catalyst, converted using values and assumptions described in table note (a). If motorcycles account for a significant share of the national vehicle population, inventory compilers should adjust the given default emission factor downwards.

(d) Motor gasoline – light duty vehicle vintage 1995 or later default value is based on the USEPA (2004b) value for a USA Light Duty Gasoline Vehicle (Car) – Tier 1, converted using values and assumptions described in table note (a). If motorcycles account for a significant share of the national vehicle population, inventory compilers should adjust the given default emission factor downwards.

(e) Diesel default value is based on the EEA (2005a) value for a European heavy duty diesel truck, converted using values and assumptions described in table note (a).

(f) Natural gas default and lower values were based on a study by TNO (2003), conducted using European vehicles and test cycles in the Netherlands. There is a lot of uncertainties for N₂O. The USEPA (2004b) has a default value of 350 kg CH₄/TJ and 28 kg N₂O/TJ for a USA CNG car, converted using values and assumptions described in table note (a). Upper and lower limits are also taken from USEPA (2004b)

(g) The default value for methane emissions from LPG, considering for 50 MJ/kg low heating value and 3.1 g CH₄/kg LPG was obtained from TNO (2003). Uncertainty ranges have not been provided.

(h) Ethanol default value is based on the USEPA (2004b) value for a USA ethanol heavy duty truck, converted using values and assumptions described in table note (a).

(i) Data obtained in Brazilian vehicles by Borsari (2005) and CETESB (2004 & 2005). For new 2003 models, best case: 51.3 kg THC/TJ fuel and 26.0 percent CH₄ in THC. For 5 years old vehicles: 67 kg THC/TJ fuel and 27.2 percent CH₄ in THC. For 10 years old: 308 kg THC/TJ fuel and 27.2 percent CH₄ in THC.

Table 2.2.1.3: Reference Approach default carbon content value for each fuel type

Fuel type English description	Default carbon content ¹ (kg/GJ)	Lower	Upper
Crude Oil	20.0	19.4	20.6
Orimulsion	21.0	18.9	23.3
Natural Gas Liquids	17.5	15.9	19.2
Motor Gasoline	18.9	18.4	19.9
Aviation Gasoline	19.1	18.4	19.9
Jet Gasoline	19.1	18.4	19.9
Jet Kerosene	19.5	19	20.3
Other Kerosene	19.6	19.3	20.1
Shale Oil	20.0	18.5	21.6
Gas/Diesel Oil	20.2	19.8	20.4
Residual Fuel Oil	21.1	20.6	21.5
Liquefied Petroleum Gases	17.2	16.8	17.9
Ethane	16.8	15.4	18.7
Naphtha	20.0	18.9	20.8
Bitumen	22.0	19.9	24.5
Lubricants	20.0	19.6	20.5
Petroleum Coke	26.6	22.6	31.3
Refinery Feedstocks	20.0	18.8	20.9
Refinery Gas ²	15.7	13.3	19.0
Paraffin Waxes	20.0	19.7	20.3
White Spirit & SBP	20.0	19.7	20.3

Other Petroleum Products	20.0	19.7	20.3
Anthracite	26.8	25.8	27.5
Coking Coal	25.8	23.8	27.6
Other Bituminous Coal	25.8	24.4	27.2
Sub-Bituminous Coal	26.2	25.3	27.3
Lignite	27.6	24.8	31.3
Oil Shale and Tar Sands	29.1	24.6	34
Brown Coal Briquettes	26.6	23.8	29.6
Patent Fuel	26.6	23.8	29.6
Coke Oven Coke and Lignite Coke	29.2	26.1	32.4
Gas Coke	29.2	26.1	32.4
Coal Tar ³	22.0	18.6	26.0
Gas Works Gas ⁴	12.1	10.3	15.0
Coke Oven Gas ⁵	12.1	10.3	15.0
Blast Furnace Gas ⁶	70.8	59.7	84.0
Oxygen Steel Furnace Gas ⁷	49.6	39.5	55.0
Natural Gas	15.3	14.8	15.9

Municipal Wastes (non-biomass fraction) ⁸	25.0	20.0	33.0
Industrial Wastes	39.0	30.0	50.0
Waste Oils 9	20.0	19.7	20.3
Peat	28.9	28.4	29.5
Wood/Wood Waste 10	30.5	25.9	36.0
Sulphite lyes (black liquor) 11	26.0	22.0	30.0
Other Primary Solid Biomass 12	27.3	23.1	32.0
Charcoal 13	30.5	25.9	36.0
Biogasoline 14	19.3	16.3	23.0
Biodiesels 15	19.3	16.3	23.0
Other Liquid Biofuels 16	21.7	18.3	26.0
Landfill Gas ¹⁷	14.9	12.6	18.0
Sludge Gas 18	14.9	12.6	18.0
Other Biogas 19	14.9	12.6	18.0
Municipal Wastes (biomass fraction) 20	27.3	23.1	32.0

Notes:

¹ The lower and upper limits of the 95 percent confidence intervals, assuming lognormal distributions, fitted to a dataset, based on national inventory reports, IEA data and available national data. A more detailed description is given in section 1.5

² Japanese data; uncertainty range: expert judgement;

³ EFDB; uncertainty range: expert judgement

⁴ Coke Oven Gas; uncertainty range: expert judgement

⁵ Japan & UK small number data; uncertainty range: expert judgement

⁶ 7. Japan & UK small number data; uncertainty range: expert judgement

⁸ Solid Biomass; uncertainty range: expert judgement

⁹ Lubricants ; uncertainty range: expert judgement

¹⁰EFDB; uncertainty range: expert judgement

¹¹Japanese data; uncertainty range: expert judgement

¹²Solid Biomass; uncertainty range: expert judgement

¹³EFDB; uncertainty range: expert judgement

¹⁴Ethanol theoretical number; uncertainty range: expert judgement

¹⁵Ethanol theoretical number; uncertainty range: expert judgement

¹⁶Liquid Biomass; uncertainty range: expert judgement

¹⁷⁻¹⁹Methane theoretical number; uncertainty range: expert judgement

²⁰Solid Biomass; uncertainty range: expert judgement

Table 2.2.1.4: Reference Approach default calorific value for each fuel type

Fuel type]	English description	Net calorific value (TJ/Gg)	Lower	Upper
Crude Oil		42.3	40.1	44.8
Orimulsion	L	27.5	27.5	28.3
Natural Ga	s Liquids	44.2	40.9	46.9
e	Motor Gasoline	44.3	42.5	44.8
Gasoline	Aviation Gasoline	44.3	42.5	44.8
Gas	Jet Gasoline	44.3	42.5	44.8
Jet Keroser	ne	44.1	42.0	45.0
Other Kero	sene	43.8	42.4	45.2
Shale Oil		38.1	32.1	45.2
Gas/Diesel Oil		43.0	41.4	43.3
Residual Fuel Oil		40.4	39.8	41.7
Liquefied I	Petroleum Gases	47.3	44.8	52.2
Ethane		46.4	44.9	48.8
Naphtha		44.5	41.8	46.5
Bitumen		40.2	33.5	41.2
Lubricants		40.2	33.5	42.3
Petroleum	Coke	32.5	29.7	41.9
Refinery F	eedstocks	43.0	36.3	46.4
_	Refinery Gas ²	49.5	47.5	50.6
Other Oil	Paraffin Waxes	40.2	33.7	48.2
Other	White Spirit and SBP	40.2	33.7	48.2
0	Other Petroleum Products	40.2	33.7	48.2

Anthracite		26.7	21.6	32.2
Coking Coal		28.2	24.0	31.0
Other Bitum	inous Coal	25.8	19.9	30.5
Sub-Bitumin	nous Coal	18.9	11.5	26.0
Lignite		11.9	5.50	21.6
Oil Shale an	d Tar Sands	8.9	7.1	11.1
Brown Coal	Briquettes	20.7	15.1	32.0
Patent Fuel		20.7	15.1	32.0
e	Coke Oven Coke and Lignite Coke	28.2	25.1	30.2
Coke	Gas Coke	28.2	25.1	30.2
Coal Tar ³		28.0	14.1	55.0
	Gas Works Gas ⁴	38.7	19.6	77.0
Derived	Coke Oven Gas ⁵	38.7	19.6	77.0
Gases	Blast Furnace Gas ⁶	2.47	1.20	5.00
	Oxygen Steel Furnace Gas ⁷	7.06	3.80	15.0
Natural Gas		48.0	46.5	50.4
Municipal Wastes (non-biomass fraction)		10	7	18
Industrial W	Industrial Wastes		NA	NA
Waste Oil ⁸		40.2	20.3	80.0
Peat		9.76	7.80	12.5

TICAT Initiative for Climate Action Transparency

els	Wood/Wood Waste 9	15.6	7.90	31.0
iofu	Sulphite lyes (black liquor) 10	11.8	5.90	23.0
Solid Biofuels	Other Primary Solid Biomass 11	11.6	5.90	23.0
Sol	Charcoal 12	29.5	14.9	58.0
	Biogasoline 13	27.0	13.6	54.0
Liquid	Biodiesels 14	27.0	13.6	54.0
Biofuels	Other Liquid Biofuels 15	27.4	13.8	54.0
8	Landfill Gas ¹⁶	50.4	25.4	100
Gas Biomass	Sludge Gas ¹⁷	50.4	25.4	100
Gar Bio	Other Biogas 18	50.4	25.4	100
Other non- fossil fuels	Municipal Wastes (biomass fraction)	11.6	6.80	18.0

Notes:

¹ The lower and upper limits of the 95 percent confidence intervals, assuming lognormal distributions, fitted to a dataset, based on national inventory reports, IEA data and available national data. A more detailed description is given in section 1.5.

² Japanese data; uncertainty range: expert judgement

³ EFDB; uncertainty range: expert judgement

⁴ Coke Oven Gas; uncertainty range: expert judgement

⁵⁻⁷Japan and UK small number data; uncertainty range: expert judgement

⁸ For waste oils the values of "Lubricants" are taken

⁹ EFDB; uncertainty range: expert judgement

¹⁰Japanese data ; uncertainty range: expert judgement

¹¹Solid Biomass; uncertainty range: expert judgement

¹²EFDB; uncertainty range: expert judgement

¹³⁻¹⁴Ethanol theoretical number; uncertainty range: expert judgement;

¹⁵Liquid Biomass; uncertainty range: expert judgement

¹⁶⁻¹⁸Methane theoretical number uncertainty range: expert judgement;

Table 2.2.1.5: Reference Approach default Carbon Oxidation Factor for each fuel type

Fue	l type English description	e English description content		Effective CO ₂ emission factor (kg/TJ) ²			
i dei type English description		(kg/GJ)	oxidation factor	Default value ³ 95% confidence		ence interval	
		A	В	C=A*B*44/ 12*1000	Lower	Upper	
Crud	le Oil	20.0	1	73 300	71 100	75 500	
Orin	nulsion	21.0	1	77 000	69 300	85 400	
Natu	ıral Gas Liquids	17.5	1	64 200	58 300	70 400	
g	Motor Gasoline	18.9	1	69 300	67 500	73 000	
Gasoline	Aviation Gasoline	19.1	1	70 000	67 500	73 000	
ö	Jet Gasoline	19.1	1	70 000	67 500	73 000	
Jet K	lerosene	19.5	1	71 500	69 700	74 400	
Othe	r Kerosene	19.6	1	71 900	70 800	73 700	
Shal	e Oil	20.0	1	73 300	67 800	79 200	
Gas/	Diesel Oil	20.2	1	74 100	72 600	74 800	
Resi	dual Fuel Oil	21.1	1	77 400	75 500	78 800	
Liqu	efied Petroleum Gases	17.2	1	63 100	61 600	65 600	
Etha	ne	16.8	1	61 600	56 500	68 600	
Napl	htha	20.0	1	73 300	69 300	76 300	
Bitu	men	22.0	1	80 700	73 000	89 900	
Lubi	icants	20.0	1	73 300	71 900	75 200	
Petro	oleum Coke	26.6	1	97 500	82 900	115 000	
	nery Feedstocks	20.0	1	73 300	68 900	76 600	

E.	Refinery Gas	15.7	1	57 600	48 200	69 000
Other Oil	Paraffin Waxes	20.0	1	73 300	72 200	74 400
õ	White Spirit & SBP	20.0	1	73 300	72 200	74 400
Othe	er Petroleum Products	20.0	1	73 300	72 200	74 400
Ant	iracite	26.8	1	98 300	94 600	101 000
Cok	ing Coal	25.8	1	94 600	87 300	101 000
Othe	er Bituminous Coal	25.8	1	94 600	89 500	99 700
Sub	Bituminous Coal	26.2	1	96 100	92 800	100 000
Lig	lite	27.6	1	101 000	90 900	115 000
Oil	Shale and Tar Sands	29.1	1	107 000	90 200	125 000
Bro	wn Coal Briquettes	26.6	1	97 500	87 300	109 000
Pate	nt Fuel	26.6	1	97 500	87 300	109 000
Coke	Coke oven coke and lignite Coke	29.2	1	107 000	95 700	119 000
S	Gas Coke	29.2	1	107 000	95 700	119 000
Coa	l Tar	22.0	1	80 700	68 200	95 300
es	Gas Works Gas	12.1	1	44 400	37 300	54 100
1 Gas	Coke Oven Gas	12.1	1	44 400	37 300	54 100
Derived Gases	Blast Furnace Gas ⁴	70.8	1	260 000	219 000	308 000
De	Oxygen Steel Fumace Gas ⁵	49.6	1	182 000	145 000	202 000

Cont...

Fuel type English description		Default carbon content	Default carbon	Effective CO ₂ emission factor (kg/TJ) ²			
	ype Lugina description	(kg/GJ)	oxidation Factor	Default value	95% confidence inte		
		A	В	C=A*B*44/ 12*1000	Lower	Upper	
Natura	l Gas	15.3	1	56 100	54 300	58 300	
Munici fraction	ipal Wastes (non-biomass n)	25.0	1	91 700	73 300	121 000	
Industr	rial Wastes	39.0	1	143 000	110 000	183 000	
Waste	Oil	20.0	1	73 300	72 200	74 400	
Peat		28.9	1	106 000	100 000	108 000	
ls	Wood/Wood Waste	30.5	1	112 000	95 000	132 000	
SolidBiofuels	Sulphite lyes (black liquor) ⁵	26.0	1	95 300	80 700	110 000	
lidB	Other Primary Solid Biomass	27.3	1	100 000	84 700	117 000	
So	Charcoal	30.5	1	112 000	95 000	132 000	
	Biogasoline	19.3	1	70 800	59 800	84 300	
Liquid Biofuels	Biodiesels	19.3	1	70 800	59 800	84 300	
- <u>a</u>	Other Liquid Biofuels	21.7	1	79 600	67 100	95 300	
0055	Landfill Gas	14.9	1	54 600	46 200	66 000	
Gas biomass	Sludge Gas	14.9	1	54 600	46 200	66 000	
B	Other Biogas	14.9	1	54 600	46 200	66 000	
Other non- fossil fuels	Municipal Wastes (biomass fraction)	27.3	1	100 000	84 700	117 000	

Notes:

¹ The lower and upper limits of the 95 percent confidence intervals, assuming lognormal distributions, fitted to a dataset, based on national inventory reports, IEA data and available national data. A more detailed description is given in section 1.5

² TJ = 1000GJ

³ The emission factor values for BFG includes carbon dioxide originally contained in this gas as well as that formed due to combustion of this gas.

⁴ The emission factor values for OSF includes carbon dioxide originally contained in this gas as well as that formed due to combustion of this gas

⁵ Includes the biomass-derived CO₂ emitted from the black liquor combustion unit and the biomass-derived CO₂ emitted from the kraft mill lime kiln.

Table 2.2.1.6a: Default CO2 emission factor for Domestic Aviation

Fuel	Default (kg/TJ)	Lower	Upper
Aviation Gasoline	70 000	67 500	73 000
Jet Kerosene	71 500	69 800	74 400

Table 2.2.1.6b: Default N₂O and CH₄ emission factor for Domestic Aviation

Fuel	CH4 Default (Uncontrolled) Factors (in kg/TJ)	N ₂ O Default (Uncontrolled) Factors (in kg/TJ)	NOx Default (Uncontrolled) Factors (in kg/TJ)
All fuels	0.5 ^a	2	250
	(-57%/+100%) ^b	(-70%/+150%) ^b	+25% °

^a in the cruise mode CH4 emissions is assumed to be negligible (Wiesen et al., 1994). For LTO cycles only

(i.e., below an altitude of 914 meters (3000 ft.)) the emission factor is 5 kg/TJ (10% of total VOC factor)

(Olivier, 1991). Since globally about 10% of the total fuel is consumed in LTO cycles (Olivier, 1995), the

```
resulting fleet averaged factor is 0.5 kg/TJ.
```

^b IPCC, 1999.

^c Expert Judgement.

Emission factors for other gases (CO and NMVOC) and sulphur content which were included in the 1996

IPCC Guidelines can be found in the EFDB.

Table 2.2.1.7a: Default CO₂ emission factor for Domestic Waterborne Navigation

kg/TJ						
Fuel		Default	Lower	Upper		
Gasoline		69 300	67 500	73 000		
Other Kerosene		71 900	70 800	73 600		
Gas/Diesel Oil		74 100	72 600	74 800		
Residual Fuel Oil		77 400	75 500	78 800		
Liquefied Petroleum Gases		63 100	61 600	65 600		
Other Oil	Refinery Gas	57 600	48 200	69 000		
	Paraffin Waxes	73 300	72 200	74 400		
	White Spirit & SBP	73 300	72 200	74 400		
	Other Petroleum Products	73 300	72 200	74 400		
Natural Gas		56 100	54 300	58 300		

Table 2.2.1.7a: Default N₂O and CH₄ emission factor for Domestic Waterborne Navigation

	CH4 (kg/TJ)	N ₂ O (kg/TJ)		
Ocean-going Ships *	7 <u>+</u> 50%	2 +140% -40%		
*Default values derived for diesel engines using heavy fuel oil. Source: Lloyd's Register (1995) and EC (2002)				