

Co-bénéfices environnementaux dans la contribution à l'atténuation du secteur des transports rapportée par la République de Guinée dans sa Contribution Déterminée au niveau Nationale (CDN) révisée 2021

Initiative pour la transparence de l'action climatique - ICAT

Titre du livrable 3a: Co-bénéfices environnementaux dans la contribution à l'atténuation du secteur des transports telle que communiquée par la République de GUINEE dans sa CDN 2021 révisée.

Auteurs

M. Sidiki CAMARA, Expert Changement climatique

M. Sanassy SIDIBE, Expert en Energie

Date: 28.07.2025

DISCLAIMER

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, recording or otherwise, for commercial purposes without prior permission of GUINEA. Otherwise, material in this publication may be used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of GUINEA and ICAT as the source. In all cases the material may not be altered or otherwise modified without the express permission of the GUINEA.

PREPARED UNDER

The Initiative for Climate Action Transparency (ICAT), supported by Austria, Canada, Germany, Italy, and the Children's Investment Fund Foundation.

■ Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

Environnement et Changement climatique Canada

The ICAT project is hosted by the United Nations Office for Project Services (UNOPS).

TABLE DES MATIERES

KELAII	ON ENTRE LES TABLEAUX	ı V
LISTE D	DES FIGURES	٧
Sigles e	et Acronymes	V
Resumé	É Executif\	/
I- Intro	oduction	1
II- Cor	ntexte de la CDN de la Guinée	. 2
	escription de l'Outil pour la détermination des co-bénéfices, des source nation et de la portée de l'étude	
3.1	Sources d'information et portée de l'étude	. 5
3.2	Méthodologie et hypothèses pour la détermination des co-bénéfices	. 6
3.3	Données et hypothèses générales utilisées pour les deux scénarios BAU.	.7
3.4	Hypothèses pour le scénario BAU sans mesures d'atténuation	. 8
3.5	Hypothèses pour le scénario BAU avec mesures d'atténuation (MIT)	11
	rétermination des co-bénéfices pour les deux scénarios. Résultats naires	13
4.1- A	Avantages supplémentaires sans mesures d'atténuation1	13
	Avantages supplémentaires grâce aux mesures d'atténuation (scénario 20)
4.3-	Total des avantages supplémentaires pour les deux scénarios2	26
V- C	Conclusions2	29
Référer	nces	30
RELATI	ION ENTRE LES TABLEAUX	
Tableau	1 . Données générales pour l'année de base 2020, pour les deux scénarios 2 . Projections de population et de PIB 3 . Données d'entrée et source d'information. Scénario BAS	8

Tableau 4 . Données d'entrée et source d'information. Impact: CONGESTION. Scénari	0
BAS	9
Tableau 5. Données d'entrée et source d'information. Impact : ACCIDENTS. Scénario	
BAS	10
Tableau 6 . Données d'entrée et source d'information. Impact: ÉCONOMIES DE	
CARBURANT. Scénario BAS	10
Tableau 7 . Données d'entrée et source d'information. Scénario BAU du MIT	12
Tableau 8. Données d'entrée et source d'information. Impact: CONGESTION. Scénario)
BAU MIT	12
Tableau 9 . Données d'entrée et source d'information. Impact: ACCIDENTS. Scénario	
BAU MIT	13
Tableau 10 . Données d'entrée et source d'information. Impact : ÉCONOMIES DE	
CARBURANT. Scénario BAU MIT	13
Tableau 11 . Retard annuel par type de véhicule (h). Scénario BAS	14
Tableau 12. Coût total du retard en dollard Scénario BAS	15
Tableau 13. résultats moyens des accidents de la route	16
Tableau 14 . Coûts des accidents anuels de la circulation (milliers USD). Scénario BAS	16
Tableau 15 . Tableaux de résultats sur la consommation et le coût du carburant	18
Tableau 16 . Coût des carburants (en milliers de USD). Scénario BAS	18
Tableau 17 . Décès prématurés et années de vie perdues. Scénario BAS	19
Tableau 18 . Résultats de la pollution de l'air. Scénario BAS	19
Tableau 19 . Retard annuel par type de véhicule (h). Scénario MIT	21
Tableau 20 . Coût total du retard (milliers de USD). Scénario MIT	21
Tableau 21 . Coût annuel moyen des accidents de la route (milliers de USD). Scénaric)
MIT	21
Tableau 22. Consommation de carburant (milliers de litres d'essence). Scénario MIT	24
Tableau 23 . Coût du carburant (en milliers d'écus). Scénario MIT	24
Tableau 24. Décès prématurés et années de vie perdues. Scénario du MIT	25
Tableau 25 . Résultats de la pollution de l'air. Scénario MIT	26

LISTE DES FIGURES

Figure 1: carte de la République de Guinée	1
Figure 2: Temps perdu à cause des embouteillages pour toutes les zones urbaines	
modélisées	14
Figure 3: Coût des accidents de la route par type d'impact	16
Figure 4: Consommation annuelle de carburant Figure 5: coût du	
carburant	17
Figure 6: La structure de la consommation de carburant	17
Figure 7: Impact de la pollution atmosphérique annuelle sur la santé. Scénario BAS	19
Figure 8: Coût annuel des effets de la pollution de l'air sur la santé (en milliers USD).	
Scénario BAS	20
Figure 9: Temps perdu en raison de la congestion (XX). Scénario MIT	20
Figure 10: Coût du retard (xx). Scénario MIT	20
Figure 11: Coût annuel moyen des accidents de la route	22
Figure 12: Consommation annuelle de carburant (milliers de litres d'essence). Scér	nario
MIT	22
Figure 13: Coût du carburant (en milliers d'écus). Scénario MIT	23
Figure 14: Structure de la consommation de carburant (milliers de litres d'essence).	
Scénario MIT	23
Figure 15: Impact annuel de la pollution de l'air sur la santé. Scénario du MIT	25
Figure 16: Coût annuel des effets de la pollution de l'air sur la santé (en milliers d'eu	ros).
Scénario MIT	26
Figure 17: Résultats agrégés pour la période 2020-2040 pour la congestion, l'écono	mie
de carburant et la pollution atmosphérique.	26
Figure 18: Coûts annuels évités de la congestion (milliers de USD).	27
Figure 19: Temps annuel évité dans les embouteillages (heures)	27
Figure 20 . Économies annuelles de carburant (en milliers d'euros).	27
Figure 21: Impacts annuels évités sur la santé dus à la pollution de l'air (années de	vie
perdues).	28
Figure 22: Total des coûts annuels évités (milliers d'euros).	28
Figure 23: Total des coûts annuels évités par type d'impact (en milliers d'euros).	29

Sigles et Acronymes

CCNUCC Convention-cadre des Nations Unies sur les changements

climatiques

CDN Contributions déterminées au niveau national

CEDEAO Communauté Economique des Etats de l'Afrique de l'Ouest

CNI Communication Nationale Initiale

DNPNCC Direction Nationale des Pollutions, Nuisances et Changements

Climatiques

ICAT Initiative pour la transparence de l'action climatique

IGES Inventaire des gaz à effet de serre

INS Institut National de Statistique

PANA Plan d'Action National d'Adaptation aux changements

climatiques

PIB Produit Intérieur Brut

PNA Plan National d'Adaptation

SCN Seconde Communication Nationale
TCN Troisième Communication nationale

UNOPS Bureau des Nations Unies pour les services d'Appui aux projets

Resumé Executif

Ce rapport est conçu suite à une compilation des données statistiques de sources administratives des directions centrales et structures rattachées du Ministère des Transports et d'autres structures des autres ministères. Objectif de cette étude est l'application d'une méthodologie d'ICAT pour d'évaluation des Co-bénéfices environnementaux dans la contribution à l'atténuation du secteur des transports rapportée par la République de Guinée dans sa Contribution Déterminée au niveau Nationale (CDN) révisée 2021. L'étude présentée dans ce document a été réalisée à l'aide de l'outil TRACE et évalue un scénario sans mesures d'atténuation pour la période 2020-2040 et un scénario avec les mesures d'atténuation contenues dans la CDN révisée de la Guinée en 2021, associées aux transports pour la même période. Ce document comprend la méthodologie, les données, les hypothèses utilisées et les sources d'information pour préparer un projet de proposition technique sur les co-bénéfices. L'outil dispose de plusieurs modes de présentation des résultats (graphiques, tableaux) qui facilitent leur compréhension et leur communication, essentiellement aux décideurs. Les résultats obtenus montrent La réduction du volume de trafic sur les routes par exemple en réduisant les déplacements, en augmentant le taux d'occupation des véhicules, en passant aux transports en commun et en favorisant des déplacements plus actifs; la Réduction du volume de circulation sur les routes pour limiter le nombre d'accidents entre véhicules, cyclistes et piétons; La réduction des déplacements en véhicule, l'augmentation du taux d'occupation des véhicules, le passage aux transports de masse (publics), l'utilisation de véhicules plus efficaces ainsi que l'électrification du parc de transport. ces résultats fournis par cette étude peuvent être utiles aux décideurs, non seulement en ce qui concerne les économies de carburant, mais aussi en ce qui concerne la congestion routière et les accidents de la route, ce qui peut fournir des éléments pour la conception et la mise en œuvre de politiques, de programmes ou de projets spécifiques dans n'importe quelle branche du secteur des transports visant à l'expansion ou au développement des différentes routes et itinéraires du pays, tant au niveau national que local.

I- Introduction

La République de Guinée, située en Afrique de l'Ouest, entre les longitudes 8° et 15° Ouest, et les latitudes 7°30 et 12°30 Nord, couvre une superficie de 245 857 Km². Elle comprend quatre régions naturelles: Guinée maritime (Kindia Chef-lieu), Moyenne Guinée (Labé: Chef-lieu), Haute Guinée (Kankan: Chef-lieu) et Guinée Forestière (N'Zérékoré: Chef-lieu). Le climat guinéen est du type tropical avec une alternance de deux saisons de durée inégale: la saison sèche et la saison pluvieuse. La saison sèche dure de novembre à mai et la saison pluvieuse d'avril à octobre. La moyenne annuelle de pluviométrie est de 1921 mm (Moyenne de 1961-2016).

La répartition de cette pluviométrie dépend à la fois de la latitude, de la topographie ainsi que de la continentalité. Les maximas sont situés dans la région de Conakry (4500 mm) et Macenta (3500 mm), et les minimas sont observés dans les régions nord du pays (Siguiri et Koundara avec respectivement 862 et 765 mm). La durée moyenne est de 134 jours de pluie par an, avec un maximum de 207 jours à Macenta et un minimum de 63 jours à Koundara. Pays chaud et humide, la plus forte température (supérieure à 30°C) est enregistrée en mars-avril dans la zone nord de Guinée, aux frontières guinéo-sénégalaise et guinéo-malienne, pendant que la plus basse température (inférieur à 10°C) est observée en décembre-janvier à Labé dans les hauteurs du Fouta-Djalon. (SNCC, 2019). La Guinée bénéficie ainsi de conditions climatiques qui lui confèrent des ressources d'énergies renouvelables considérables telles que l'énergie hydroélectrique et l'énergie solaire. (LPDSE,2012)



Figure 1: carte de la République de Guinée

En effet, dans le cadre de l'accord de coopération entre le bureau des Nations Unies pour les services d'Appui aux projets (UNOPS) et le Ministère de l'Environnement et du Développement Durable à travers la Direction Nationale des Pollutions, Nuisances et Changements Climatiques (DNPNCC) en relation avec la mise en œuvre du projet de l'Initiative pour la transparence de l'action climatique (« ICAT ») en Guinée que cette « étude pilote sur l'application de la méthodologie ICAT en matière des transports » a été initiée.

II- Contexte de la CDN de la Guinée

La République de Guinée a ratifié la Convention-cadre des Nations Unies sur les changements climatiques (CCNUCC) et le Protocole de Kyoto respectivement en 1993 et 2005. Elle a, depuis, élaboré des stratégies en matière de lutte contre les changements climatiques, parmi lesquelles sa Communication Nationale Initiale (CNI), sur la base d'un inventaire des gaz à effet de serre (IGES) en 2001 (sur la base des émissions de 1994), sa Seconde Communication Nationale (SCN) (sur la base des émissions de 2000). Enfin, la République de Guinée a élaboré son Plan d'Action National d'Adaptation aux changements climatiques (PANA) en 2007 et engagé plusieurs projets pour mettre en œuvre ce plan. Elle est par ailleurs actuellement engagée dans le processus d'élaboration de sa Troisième Communication nationale (TCN) et de son Plan National d'Adaptation (PNA), qui devraient respectivement être achevés en 2023 et 2024. Dans le cadre des travaux sur la TCN, un 3ème IGES a été élaboré au premier semestre 2021 et constitue le socle des données de référence de la révision de la CDN

dans le secteur des transports.

Le secteur du transport est la principale source de consommation d'énergies fossiles en Guinée engendrant des émissions de 2 155 ktCO2eq en 2018. (CDN,2021).

C'est ainsi que la Guinée a pris des engagements dans le secteur pour la modernisation du parc de véhicules avec l'interdiction d'importation de véhicules de plus de 13 ans depuis 2021, et de véhicules de plus de 8 ans à horizon 2025.

Les contributions déterminées au niveau national (CDN) sont les engagements pris par les pays partis à la Convention-cadre des Nations unies sur les changements climatiques (CCNUCC). Elles doivent être progressives et refléter une plus grande ambition dans les mesures d'atténuation et d'adaptation incluses.

En 2021, le pays a présenté sa contribution déterminée au niveau national (CDN), qui comprend des objectifs d'atténuation dans différents secteurs, dont celui des transports. L'objectif du secteur des transports consiste à améliorer l'efficacité du système de transports national.

L'un des principaux objectifs du projet ICAT- en Guinée est de renforcer les capacités nationales et de sélectionner des méthodologies et des procédures pertinentes pour mener des études à l'appui des propositions visant à accroître l'ambition des contributions du pays en matière d'atténuation.

L'un des aspects analysés qui peut contribuer à accroître l'ambition de l'objectif dans ce secteur est lié à la prise en compte des avantages supplémentaires qui découlent de la réduction des combustibles fossiles et peuvent inclure des améliorations de la qualité de l'air, de la santé publique et de l'économie locale, il était donc nécessaire d'identifier un outil ou une méthodologie qui permettrait d'atteindre cet objectif.

En ce sens, l'initiative ICAT dispose d'une large gamme d'outils qui facilitent le travail de planification, de suivi et d'estimation des impacts des actions climatiques mises en œuvre. Parmi ceux-ci figure TRACE, un outil qui permet d'estimer et de comptabiliser les co-bénéfices environnementaux liés à la réduction des carburants dans le secteur des transports.

L'étude présentée dans ce document a été réalisée avec l'outil TRACE et évalue un scénario sans mesures d'atténuation pour la période 2020 - 2040 et un scénario avec les mesures d'atténuation contenues dans la CDN de la Guinée revisée en 2021, associées au transport au cours de la même période.

Ce document comprend la méthodologie, les données, les hypothèses utilisées et les sources d'information pour préparer une version provisoire de la proposition technique sur les co-bénéfices.

III- Description de l'Outil pour la détermination des co-bénéfices, des sources d'information et de la portée de l'étude.

Pour de déterminer les avantages supplémentaires découlant de l'objectif du secteur des transports liés à l'amélioration de l'efficacité du système de transports national, le modèle TRACE est utilisé pour réaliser cette étude.

TRACE évalue les bénéfices plus larges de la décarbonation des transports urbains. Les co-bénéfices et les réductions de coûts associées sont souvent négligés dans les processus décisionnels, probablement parce qu'ils sont difficiles à appréhender. TRACE permet de mieux comprendre ces bénéfices supplémentaires, ce qui peut favoriser un changement de paradigme, passant d'un « partage des efforts » face à la charge mondiale de la lutte contre le changement climatique à un « partage des opportunités » des impacts positifs de la décarbonation à une échelle plus locale.

TRACE quantifie et monétise les principaux co-bénéfices des trajectoires de décarbonation pour le secteur des transports urbains. Plutôt qu'une analyse approfondie des impacts, l'outil met en évidence les opportunités clés, met en évidence la manière dont elles découlent de l'action climatique et indique les domaines dans lesquels une évaluation plus approfondie pourrait s'avérer utile pour élaborer des instruments politiques convaincants, capables de mener une action climatique ambitieuse et de contribuer significativement à divers objectifs de développement durable.

TRACE comprend un tableau de bord permettant de comparer facilement l'évaluation d'impact des différentes trajectoires de réduction des émissions, mettant en évidence les économies de coûts pour les principaux co-bénéfices entre un scénario de statu quo et des scénarios de décarbonation.

TRACE permet de comparer les scénarios afin d'évaluer les effets des actions mises en œuvre en déterminant quatre types d'impacts : la congestion routière, les accidents de la circulation, les économies de carburant et la pollution de l'air. Il est ainsi possible d'obtenir les coûts évités en raison de la congestion routière, le temps perdu annuellement en raison de la congestion routière, le nombre d'accidents de la circulation évités annuellement, le montant des économies de carburant et leurs coûts, ainsi que les impacts sanitaires annuels évités en raison de la pollution de l'air et les années de vie perdues à cause de cette cause.

TRACE ne modélise pas les voies du secteur des transports elles-mêmes, mais complète les outils existants en facilitant l'analyse des impacts plus larges associés à ces voies

L'outil dispose de plusieurs modes de présentation des résultats (graphiques, tableaux) qui facilitent leur compréhension et leur communication, essentiellement aux décideurs.

Les résultats fournis par TRACE peuvent être utiles aux décideurs, non seulement en ce qui concerne les économies de carburant, mais aussi en ce qui concerne la congestion routière et les accidents de la route, ce qui peut fournir des éléments pour la conception et la mise en œuvre de politiques, de programmes ou de projets spécifiques dans n'importe quelle branche du secteur des transports visant à l'expansion ou au développement des différentes routes et itinéraires du pays, tant au niveau national que local.

3.1 Sources d'information et portée de l'étude

Le pays dispose d'un institut national de la statistique (INS) qui couvre les besoins d'information du gouvernement et de systèmes d'information statistique complémentaires (SIEC) des secteurs/BSD appuyés par l'INS. Les données nécessaires à l'étude proviennent du des annuaires statistiques nationale et du secteur des transports, des systèmes d'information statistique sectoriels complémentaires et de l'avis d'experts. Dans certains cas, des données rapportées dans la littérature internationale sont utilisées et dûment référencées.

Cependant, l'une des principales difficultés réside dans la disponibilité de sources de données et d'informations officielles pour déterminer ces avantages supplémentaires. Bien qu'il existe un programme de développement 2040 dans le pays, il n'y a pas de projections claires et définies dans tous les secteurs et activités, de sorte que de nombreux paramètres et projections qui seront supposés dans cette étude seront basés sur des jugements d'experts, ce qui entraînera de grandes incertitudes dans les estimations. En outre, certaines données nécessaires ne sont pas saisies par les statistiques nationales et ne sont donc pas disponibles.

Après avoir analysé les différentes sources d'information, les données requises par le modèle et les critères des experts consultés, les considérations suivantes sont faites en ce qui concerne les types d'impact à déterminer :

• Économies de carburant :

Il est possible et extrêmement important de déterminer les valeurs liées à ce type d'impact étant donné que la CDN du secteur des transports vise à réduire la consommation de combustibles fossiles dans les véhicules terrestres de 2 300 kTCO2 /an évitées par rapport au scenario BAU. Par conséquent, sa détermination permettra de comparer les résultats obtenus ou estimés avec d'autres outils.

• Congestion:

Il est possible de déterminer des valeurs pour ce type d'impact, bien que pour certains paramètres, il soit nécessaire de faire appel à un jugement d'expert car les statistiques officielles ne contiennent pas d'informations de ce type et, dans certains cas, elles sont agrégées pour l'ensemble du secteur. Pour ce type d'impact, les résultats ne devraient pas être des valeurs significatives.

• Accidents:

Il est possible de déterminer les valeurs pour ce type d'impact et il est également nécessaire de recourir à un jugement d'expert car les informations existantes dans les statistiques officielles apparaissent sous une forme agrégée. De même, aucun résultat significatif n'est attendu pour ce type d'impact.

• Pollution de l'air :

Les valeurs pour ce type d'impact sont déterminées selon la méthodologie incluse dans l'outil; elles ne sont pas censées être des chiffres significatifs non plus, mais permettraient d'obtenir des résultats comparables à ceux obtenus dans des études plus complètes et plus spécifiques sur ce sujet, comprenant des évaluations et des mesures réelles sur le terrain, réalisées par d'autres institutions du secteur.

3.2 Méthodologie et hypothèses pour la détermination des co-bénéfices

L'analyse prend en compte le même regroupement du parc automobile du pays que celui utilisé dans les études visant à déterminer les émissions évitées grâce à l'application de l'interdiction d'importation de véhicules de plus de 8 ans à horizon 2025 (norme CEDEAO); mise en œuvre à l'horizon 2030 de l'interdiction d'importation de véhicules de plus de 5 ans (préconisation de la Commission de la CEDEAO de 2020). Soit 500 000 voitures plus efficaces entre 2025 et 2030 et à l'utilisation et au développement accrus des véhicules électriques, qui répartit le transport automobile en trois groupes:

Groupe I - Motocycles : ce groupe comprend les tricycles et les motocycles, qui sont des véhicules utilisant principalement de l'essence comme carburant.

Groupe II-Véhicules légers: il s'agit des véhicules fonctionnant au diesel ou à l'essence, y compris les taxis et les minibus qui assurent des services de transport public. Il comprend également les voitures, les camionnettes et les panneaux appartenant à des entreprises fournissant des services captifs, tels que l'eau et l'assainissement, les télécommunications, les services électriques, les services postaux, les ambulances, entre autres.

Groupe III - Véhicules lourds : principalement composé d'autobus utilisés pour le transport urbain de masse de passagers ; comprend principalement des équipements consommant du diesel.

L'année de départ est 2021, car c'est l'année où commence la mise en œuvre de la CDN du secteur et elle couvre l'horizon de 2021 à 2030, date à laquelle elle se termine, subdivisée en intervalles annuels.

D'autres données générales sont nécessaires, telles que la population, le PIB et ses taux de croissance, déterminés par le comportement passé tel que reflété dans les statistiques ou associés à des estimations futures, à partir desquelles des estimations sont développées et des indicateurs globaux sont déterminés. Ces données sont généralement disponibles dans les statistiques nationales et, dans les cas où les données exactes ne sont pas disponibles auprès des sources officielles d'information dans le pays, un jugement d'expert est utilisé pour les déterminer.

Ensuite, les impacts sont déterminés pour un scénario de base (BAS) qui ne tient pas compte des mesures d'atténuation, c'est-à-dire qu'il maintient constantes tout au long de la période les valeurs existant dans l'année de départ 2021, et un scénario d'atténuation (MIT) avec les mesures d'atténuation contenues dans la CND,

3.3 Données et hypothèses générales utilisées pour les deux scénarios BAU

Une analyse détaillée des hypothèses ainsi que des données d'entrée et des sources de données pour chacun des scénarios développés est présentée ci-dessous.

Le tableau 1 présente les données générales utilisées dans les deux scénarios pour l'année 2020 et la source des données.

Tableau 1. Données générales pour l'année de base 2020, pour les deux scénarios

Données	Valeur, unité	Source
Type de monnaie	1 US\$	BCRG
Population	12 218 357 milliers d'habitants ¹	Annuaire_Statistique_2022_VF
PIB	1 209 millions US\$	Annuaire_Statistique_2022_VF
Projections	Tableau 2	ONEI 2016, édition 2017
démographiques		
Projections du PIB	Tableau 2	MEP, jugement d'expert
Prix des		SONAP/GUINEE
carburants	1,05 US\$/litre	
 Essence 	1,05 US\$/litre	
Diesel		
Prix de l'électricité	0,10 US\$/kWh	EDG/Ministère de l'Energie

Pour établir des projections, il est nécessaire de connaître les taux de croissance attendus des paramètres macroéconomiques tels que la population et le PIB, qui sont présentés dans le tableau 2.

Pour la population de la période 2020-2030, on utilise le taux de croissance réel moyen pour la période 2020-2025, selon les annuaires statistiques annuels, et pour la période 2030-2040, on suppose le taux de croissance correspondant à la variante basse de la croissance démographique.

Dans le cas du PIB pour la période 2020-2030, le taux de croissance réel moyen pour la période 2020-2025 à prix variable de 2015 selon les annuaires statistiques annuels est supposé, et les valeurs pour la période 2030-2040 sont supposées selon un jugement d'expert en l'absence de projections publiques.

1

Tableau 2. Projections de population et de PIB

	croissance annuelle	
	2020 a 2030	2030 a 2040
Population	<< 2,39% >>	<< 2,18% >>
PIB(US\$)	<< 1 083 >>	<< 1 956 >>

Il existe un groupe de paramètres qui ne sont définis qu'une seule fois dans le scénario de référence et qui, en l'absence de données nationales, ont été supposés à partir des références internationales suggérées dans TRACE², en supposant les valeurs moyennes pour la région de l'Afrique de l'ouest et sont énumérés ci-dessous :

Kilométrage moyen annuelle parcouru par véhicule est de 15,000 km/véhicule

Longueur moyenne des routes par véhicule est de 15,000 km/véhicule/an (constant)

Nombre moyen de véhicules par habitant urbain est de 1,8 pers/véhicule (constant).

De même, des voies à trafic mixte sont envisagées pour tous les modes de transport, c'est-à-dire une route standard utilisée par différents modes de transport tels que les voitures, les camions, les bus et les bicyclettes. Ces hypothèses sont retenues pour les deux scénarios.

En plus des données générales décrites ci-dessus, pour chacun des scénarios évalués, les valeurs des paramètres à prendre en compte dans l'outil sont saisies et détaillées ci-dessous.

3.4 Hypothèses pour le scénario BAU sans mesures d'atténuation

Comme expliqué précédemment, un scénario de base (BAS) est estimé qui n'inclut pas la mise en œuvre de mesures d'atténuation dans le secteur, mais maintient les valeurs de l'année de départ 2020 et les maintient constantes tout au long de la période d'étude.

Les tableaux 3, 4, 5 et 6 présentent les données d'entrée requises pour le scénario BAU, pour chacun des types d'impact et la source des données, pour le scénario BAS.

2

Tableau 3 . Données d'entrée et source d'information. Scénario BAS

Paramètre (unité)	Valeur utilisée	Source
Activité de transport (passagers-km)	 pour déterminer le trafic par mode de transport, il est estimé pour chaque année en tenant compte du nombre de véhicules, du taux d'occupation et de la distance moyenne parcourue. Suppose le nombre de véhicules existant en 2020, dans chacun des groupes. Ils restent constants tout au long de la période. 	Le jugement des experts
Taux d'occupation par mode de transport	 Trajectoire de croissance: maintien des taux de croissance historiques jusqu'en 2040 Composition du parc automobile: aucune amélioration de l'efficacité, poursuite des importations de véhicules vieillissants Consommation de carburant en 2040: 10 458 millions de litres par an Pas d'électrification: les véhicules à moteur à combustion interne restent dominants Pas de transfert modal: le transport routier conserve sa part de marché Ceux-ci restent constants tout au long de la période 	Le jugement des experts
Distance annuelle moyenne parcourue (km)	15000 km par véhicule et par an Les valeurs sont maintenues constantes tout au long de la période	Jugement d'experts

Tableau 4 . Données d'entrée et source d'information. Impact: CONGESTION. Scénario BAS

Paramètre (unité)	Valeur utilisée	Source
Longueur des routes (km)	 Pour la zone urbaine, les routes à trafic mixte sont prises en compte dans les deux scénarios. Longueur: 15 000 km Valeur constante pour les deux scénarios 	Le jugement des experts
Nombre moyen de voies sur les routes	2 voies (pour les deux scénarios)	Le jugement des experts
Moyenne mensuelle des jours de travail (jours)	20 jours, restent constants pendant toute la période et dans les deux scénarios	Le jugement des experts
Durée moyenne du travail quotidien (heures)	10 heures, restent constantes pendant toute la période et dans les deux scénarios.	Le jugement des experts

Tableau 5. Données d'entrée et source d'information. Impact : ACCIDENTS. Scénario BAS

Paramètre (unité)	Valeur utilisée	Source
Nombre de tués sur les routes (personnes)	 Les valeurs réelles sont prises pour les années 2013 à 2020 et les valeurs de 2021 à 2030 sont extrapolées sur une base tendancielle. Comme les statistiques nationales sont présentées sous une forme agrégée et non par type de véhicule, on suppose la structure suivante, qui reste constante tout au long de la période et pour les deux scénarios : 	Le jugement des experts
	-Occupant	

Tableau 6. Données d'entrée et source d'information. Impact: ÉCONOMIES DE CARBURANT. Scénario BAS

Paramètre (unité)	Valeur utilisée	Source
Consommation annuelle de carburant (litres d'équivalent diesel)	 Le nombre de véhicules existant en 2020, dans chacun des groupes, est supposé et maintenu constant tout au long de la période. 	-Guide général du suivi de la CND -Calcul de la CND -GACMO
	 Trajectoire de croissance: maintien des taux de croissance historiques jusqu'en 2040 Composition du parc automobile: aucune amélioration de l'efficacité, poursuite des importations de véhicules vieillissants Consommation de carburant en 2040: 10 458 millions de litres par an Pas d'électrification: les véhicules à moteur à combustion interne restent dominants Pas de transfert modal: le transport routier conserve sa part de marché 	

Pour ce type d'impact, des coûts de carburant préalablement définis sont nécessaires comme données d'entrée, qui sont maintenues constantes sur l'ensemble de la période d'étude et pour les deux scénarios.

En Guinée Conakry, on ne dispose pas de chiffres précis sur le nombre de véhicules électriques en circulation. Cependant, il est prévu que l'usine NGD (New Guinea Development) produise 500 véhicules électriques cette année, en plus de 800 camions. Ces véhicules seront en partie alimentés par l'énergie solaire. L'objectif est de satisfaire la demande locale et d'exporter vers d'autres pays d'Afrique de l'Ouest. (https://www.google.com/search?q=nombre+de+v%C3%A9hicules+electriques+en+quin%C3%A9e+conakry du 19/07/2025)

3.5 Hypothèses pour le scénario BAU avec mesures d'atténuation (MIT)

Le scénario d'atténuation (MIT) se caractérise par la mise en œuvre des mesures d'atténuation contenues dans la CND, c'est-à-dire qu'il envisage l'introduction de véhicules électriques dans le transport automobile.

Le remplacement des véhicules à combustion représentatifs de chacun des groupes par des véhicules électriques est envisagé, c'est-à-dire les motos à essence par des motos électriques, les voitures à essence par des voitures électriques et les autobus diesel par des autobus électriques.

L'introduction progressive de véhicules électriques au cours de la période d'étude dans ce scénario correspond à la mise en œuvre prévue de la politique relative aux véhicules électriques dans le pays d'ici à 2040.

Les tableaux 7, 8, 9 et 10 présentent les données d'entrée requises pour le scénario, pour chacun des types d'impact et la source des données, pour le scénario BAU MIT.

Tableau 7. Données d'entrée et source d'information. Scénario BAU du MIT

Paramètre (unité)	Valeur utilisée	Source
Activité de transport (passagers-km)	le nombre de véhicules introduits comme prévu dans la mise en œuvre de la CDN d'ici à 2030, dans chacun des groupes et pour chacune des années de la période.	-Valeurs supposées dans le nouveau calcul de l'ADD
Taux d'occupation par mode de transport	Pour les véhicules électriques	Le jugement des experts
	1,8 personne par véhicule Ceux-ci restent constants tout au long de la période de 2020 à 2040	

Distance annuelle parcourue chaque jour (km)	15 000 km par véhicule et par an (constant)	Guide général pour le suivi des CDN
Croissance totale du parc	expansion naturelle avec le développement économique	Recalcul du CDN

auableau 8. Données d'entrée et source d'information. Impact: CONGESTION. Scénario BAU MIT

Paramètre (unité)	Valeur utilisée	Source
Longueur des routes (km)	•La même valeur que dans le	Annuaire
	scénario BAS est considérée.	Statistique de
		transport de la
		Guinée
Nombre moyen de voies	 La même valeur que dans le 	Annuaire
sur les routes	scénario BAS est considérée.	Statistique de
		transport de la
		Guinée
Moyenne mensuelle des	 Les mêmes considérations et valeurs 	Le jugement des
jours de travail (jours)	sont utilisées que dans le scénario	experts
	BAS.	
Durée moyenne du	•Les mêmes considérations et valeurs	Le jugement des
travail quotidien (heures)	sont utilisées que dans le scénario	experts
	BAS.	

Tableau 9. Données d'entrée et source d'information. Impact: ACCIDENTS. Scénario BAU MIT

Paramètre (unité)	Valeur utilisée	Source
Nombre de personnes tués sur les routes	 Les mêmes considérations et valeurs sont utilisées que dans le scénario BAS. 	Annuaire Statistique de transport 2020 et Le jugement des experts

Tableau 10. Données d'entrée et source d'information. Impact : ÉCONOMIES DE CARBURANT. Scénario BAU MIT

Paramètre (unité)	Valeur utilisée	Source
	 2 392 millions de litres par an 	-SONAP, Annuaire
Consommation de	• Économies totales: 8 066	statistique de
carburant en 2040	millions de litres par rapport au	transport
(litres d'équivalent	scénario de référence	-GACMO
diesel)	 Électrification des Transports 	
	: 58 % des activités de	
	transport léger d'ici 2040	
	• Transfert modal réalisé: 25 % du	
	fret transféré vers le rail	
	 Réduction des émissions de 	
	CO₂: ~75 % par rapport au	
	scénario de référence	

Sur la base de toutes les données et informations détaillées ci-dessus, les impacts sont déterminés pour chaque scénario et les co-bénéfices déterminés sont pris en compte, ce qui sera discuté ci-dessous.

IV- Détermination des co-bénéfices pour les deux scénarios. Résultats préliminaires

Les résultats préliminaires obtenus en déterminant les quatre types d'impacts associés aux mesures d'atténuation mises en œuvre dans le secteur sont présentés ci-dessous. Les résultats spécifiques sont présentés pour chacun des scénarios pour chaque type d'impact et les résultats totaux en agrégat pour chacun d'entre eux.

4.1- Avantages supplémentaires sans mesures d'atténuation

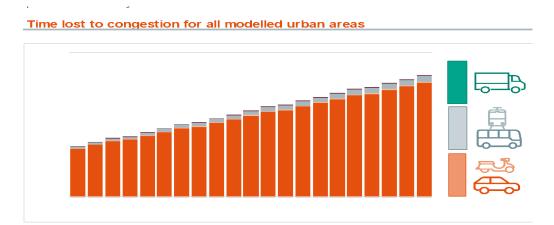
Type d'impact: CONGESTION ROUTIÈRE

Associés à la congestion, les paramètres déterminés sont le temps perdu en raison de la congestion, modélisée pour les zones urbaines, et le coût de cette congestion. Les valeurs annuelles des retards pour l'ensemble de la période, pour chacun des types de véhicules et les coûts des retards, sont présentés dans les tableaux 11 et 12.

Tableau 11. Retard annuel par type de véhicule (h). Scénario BAS

Time lost to	o cor	gestion										
Vehicle Type	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
LDV	h	334475679	360067675	385659671	397328893	422920889	448512885	474104881	485774103	511366099	536958095	562550091
2W	h	3492420	3716969	3941517	4166066	4390614	4615163	4839711	5064260	5288808	5513357	5737905
Bus	h	11229770	13251842	15273913	15316472	17338544	18766761	20194979	21623197	23051415	24479632	25907850
Light rail	h	0	0	0	0	0	0	0	0	0	0	0
Rail	h	0	0	0	0	0	0	0	0	0	0	0
HDV	h	0	0	0	0	0	0	0	0	0	0	0
Sm all cargo	h	125188	134266	141627	148988	156348	163709	171069	178430	185791	193151	200512
Total	h	349323058	377170752	405016728	416960419	444806395	472058518	499310641	512639990	539892113	567144236	594396358

Vehicle Type	Unit	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
LDV	h	588142087	599811309	625403305	650995301	676587297	702179293	713848515	739440511	765032507	790624503
2W	h	5962454	6187002	6411551	6636099	6860648	7085197	7309745	7534294	7758842	7983391
Bus	h	27336068	28764286	30192503	31620721	33048939	34477157	35905374	37333592	38761810	40190028
Light rail	h	0	0	0	0	0	0	0	0	0	0
Rail	h	0	0	0	0	0	0	0	0	0	0
HDV	h	0	0	0	0	0	0	0	0	0	0
Sm all cargo	h	207872	215233	222594	229954	237315	244675	252036	259397	266757	274118
Total	h	621648481	634977830	662229953	689482076	716734199	743986322	757315671	784567793	8 118 19 9 16	839072039



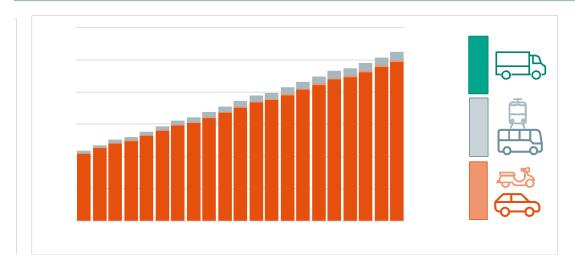

Figure 2: Temps perdu à cause des embouteillages pour toutes les zones urbaines modélisées

Tableau 12. Coût total du retard en dollard Scénario BAS

Cost of	cong	estion										
Vehicle T	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
LDV	USDk	209 047	225 042	241 037	248 331	264 326	280 321	296 316	303 609	319 604	335 599	351 594
2W	USDk	2 008	2 137	2 266	2 395	2 525	2 654	2 783	2 912	3 041	3 170	3 299
Bus	USDk	7 580	8945	10 310	10 339	11 704	12 668	13 632	14 596	15 560	16 524	17 488
Light rail	USDk	-	-	-	-	-	-	-	-	-	-	-
Rail	USDk	-	-	-	-	-	-	-	-	-	-	-
HDV	USDk	-	-	-	-	-	-	-	-	-	-	-
Small car	USDk	163	175	184	194	203	213	222	232	242	251	261
Total	USDk	218	236	253	261	278	295	312	321	338	355	372
Vehicle T	ype U	nit	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
LDV	U	SDk	367 589	374 882	390 877	406 872	422 867	438 862	446 155	462 150	478 145	494 140
2W	U	SDk	3 428	3 558	3 687	3816	3945	4074	4203	4 3 3 2	4 461	4 590
Bus	U	SDk	18 452	19 416	20 380	21 344	22 308	23 272	24 236	25 200	26 164	27 128
Light rail	U	SDk	-	-	-	-	-	-	-	-	-	
Rail	U	SDk	-	-	-	-	-	-	-	-	-	
HDV	U	SDk	-	-	-	-	-	-	-	-	-	-
Sm all car	ao H	SDk	270	280	289	299	309	318	328	337	347	356

Economic losses from time lost to congestion for all modelled urban areas

4 15

432

449

466

509

526

Figure 3: Pertes économiques dues au temps perdu à cause des embouteillages pour toutes les zones urbaines modélisées

Type d'impact: ACCIDENTS DE LA CIRCULATION

Total

USDk

389

398

Le tableau 13 montre les valeurs du coût annuel moyen des accidents de la circulation entre 2020 et 2040, en exprimant en valeurs monétaires l'impact des décès dus à cette cause, des blessures non mortelles qui représentent un nombre important et

considérable de ce coût, des dommages matériels et des coûts médicaux associés aux accidents, comme on peut le voir.

Tableau 13. résultats moyens des accidents de la route

Average annual co		Unit	2020 - 2040
Accidents	Fatalities	USD k	291 437
Accidents	Nonfatal injuries	USD k	102617
Accidents	Property damage cost	USD k	34 026
Accidents	Medical costs	USD k	9 531
Accidents	Total	USD k	437 611

Le comportement des accidents de la route et de chacun de leurs éléments constitutifs montre une tendance légèrement à la hausse sur l'ensemble de la période, comme le montrent la figure 2 et les valeurs présentées dans le tableau 14.

Cost of road accidents by type of impact

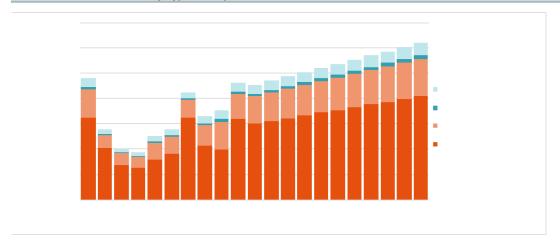


Figure 3: Coût des accidents de la route par type d'impact

Tableau 14. Coûts des accidents anuels de la circulation (milliers USD). Scénario BAS

accidents		Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Accidents	Fatalities	USDk	327 261	205 191	138 297	126 652	158 765	183 020	326 595	215 052	200 788	319 033	301 362
Accidents	Nonfatal injuri	USDk	109 500	51 124	45 841	43 504	66 774	66 735	69 978	81 193	109 109	100 950	108 737
Accidents	Property dam	USDk	36 308	16 952	15 200	14 425	22 141	22 128	23 203	26 922	36 178	33 473	36 055
Accidents	Medical costs	USDk	10 170	4748	4 2 5 8	4 041	6 202	6 198	6 500	7 5 4 1	10 134	9376	10 099

accidents		Unit	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Accidents	Fatalities	USDk	312 354	323 346	334 337	345 329	356 321	367 312	378 304	389 296	400 287	411 279
Accidents	Nonfatal injuri	USDk	112630	116 524	120 417	124 311	128 204	132 098	135 992	139 886	143 780	147 674
Accidents	Property dam	USDk	37 346	38 637	39 928	41 219	42 5 1 0	43 801	45 092	46 383	47 674	48 965
Accidents	Medical costs	USDk	10 461	10 823	11 184	11 546	11 908	12 269	12631	12 992	13 354	13716

Type d'impact: ÉCONOMIES DE CARBURANT

Les figures 5 et 6 montrent la consommation annuelle de carburant pour chacune des années de l'étude et leurs coûts, dont le comportement tendanciel linéaire à la hausse est dû au fait que le nombre de véhicules dans chaque catégorie ou groupe augmente progressivement sur toute la période.

Figure 4: Consommation annuelle de carburant

Figure 5: coût du carburant

La structure de la consommation de carburant au cours de la période est illustrée à la figure 7. Elle se concentre sur la consommation de diesel, principalement de diesel et d'essence, ce qui correspond aux types de véhicules considérés dans ce scénario.

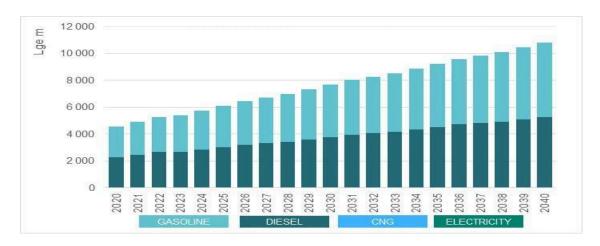


Figure 6: La structure de la consommation de carburant

Les valeurs numériques pour toutes les années de la période sont présentées dans les tableaux 15 et 16, qui montrent la consommation et les coûts agrégés par type de véhicule et de carburant, ainsi que les valeurs totales.

Tableau 15. Tableaux de résultats sur la consommation et le coût du carburant

Fuel consumption an	d fuel cost re	sults tabl	es										
Fuel consumption		Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Consumptio LDV Diesel	LDV_Diesel	Lge m	2 177	2 354	2531	2 53 1	2708	2 885	3 0 6 2	3 150	3 239	3416	3 593
Consumptio LDV Gasoline	LDV_Gasoline	Lge m	2 234	2 393	2553	2 712	2872	3 032	3 191	3 35 1	3 5 10	3 670	3 830
Consumptio 2W Gasoline	2W_Gasoline	Lge m	31	33	35	37	39	41	43	45	47	49	51
Consumptio Bus Diesel	Bus_Diesel	Lge m	36	42	49	49	55	60	64	69	73	78	82
Consumptio Light Diesel	Light rail_Diesel	Lge m	7	8	8	8	8	8	9	9	9	9	9
Consumptio HDV Diesel	HDV_Diesel	Lge m	59	64	67	70	74	77	81	84	88	91	95
Consumptio Small Gasoline	cargo_Gasoline	Lge m	4	4	4	5	5	5	5	5	6	6	6
Consumptio LDV	Total	Lge m	4410	4 747	5084	5 243	5 580	5 9 1 6	6 253	6 501	6 7 49	7 086	7 423
Consumptio 2W	Total	Lge m	31	33	35	37	39	41	43	45	47	49	51
Consumptio Bus	Total	Lge m	36	42	49	49	55	60	64	69	73	78	82
Consumptio Light rail	Total	Lge m	7	8	8	8	8	8	9	9	9	9	9
Consumptio HDV	Total	Lge m	59	64	67	70	74	77	81	84	88	91	95
Consumptio Small cargo	Total	Lge m	4	4	4	5	5	5	5	5	6	6	6
Consumptio Total		Lge m	4548	4 898	5 247	5 412	5761	6 108	6455	6 714	6 973	7 3 2 0	7 667
Consumptio Diesel		Lge m	2 2 7 9	2 467	2654	2 658	2845	3 030	3 2 16	3 312	3 4 0 9	3 5 9 4	3 780
Consumptio Gasoline		Lge m	2 2 6 9	2 43 1	2592	2 754	2916	3 078	3 240	3 402	3 563	3 7 2 5	3 887

Fuel consum	ption			Unit	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Consumptio	LDV	Diesel	LDV_Diesel	Lge m	3 770	3 859	3 947	4 124	4 301	4 478	4 567	4 655	4 832	5 009
Consumptio	LDV	Gasoline	LDV_Gasoline	Lge m	3 989	4 149	4 308	4 468	4 628	4 787	4 947	5 106	5 266	5 426
Consumptio	2W	Gasoline	2W_Gasoline	Lge m	53	55	57	59	61	63	65	67	69	71
Consumptio	Bus	Diesel	Bus_Dies el	Lge m	87	91	96	101	105	110	114	119	123	128
Consumptio	Light	Diesel	Light rail_Diesel	Lge m	10	10	10	10	10	10	11	11	11	11
Consumptio	HDV	Diesel	HDV_Diesel	Lge m	98	102	105	109	112	116	119	123	126	130
Consumptio	Small	Gasoline	cargo_Gasoline	Lge m	6	7	7	7	7	7	8	8	8	8
Consumptio	LDV		Total	Lge m	7 759	8 007	8 256	8 592	8 929	9 266	9 514	9 762	10 098	10 435
Consumptio	2W		Total	Lge m	53	55	57	59	61	63	65	67	69	71
Consumptio	Bus		Total	Lge m	87	91	96	101	105	110	114	119	123	128
Consumptio	Light	rail	Total	Lge m	10	10	10	10	10	10	11	11	11	11
Consumptio	HDV		Total	Lge m	98	102	105	109	112	116	119	123	126	130
Consumptio	Small	cargo	Total	Lge m	6	7	7	7	7	7	8	8	8	8
Consumptio	Total			Lge m	8 014	8 272	8 53 1	8 878	9 225	9 572	9 83 1	10 089	10 437	10 784
Consumptio	Diese	ı		Lge m	3 965	4 062	4 158	4 344	4 529	4 714	4 811	4 908	5 093	5 278
Consumptio	Gasol	ine		Lge m	4 049	4 211	4 373	4 534	4 696	4 858	5 020	5 182	5 344	5 506

Tableau 16. Coût des carburants (en milliers de USD). Scénario BAS

Fuelcost					2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Fuelcost	LDV	Gasoline	LDV_Gasoline	USDm	902	967	1 031	1 096	1 160	1 2 2 5	1 289	1 354	1418	1 483	1547
Fuelcost	2W	Gasoline	2W_Gasoline	USDm	13	13	14	15	16	17	18	18	19	20	21
Fuelcost	Bus	Diesel	Bus_Diese	USDm	25	29	33	34	38	41	44	47	51	54	57
Fuelcost	HDV small	Diesel	HDV small_Diese	USDm	41	44	46	49	51	53	56	58	61	63	65
Fuelcost	Small cargo	Gasoline	Small cargo_Gasoline	USDm	2	2	2	2	2	2	2	2	2	2	2
Fuelcost	LDV		Total	USDm	2 404	2590	2777	2 841	3 028	3 2 1 4	3 401	3 526	3652	3 839	4 025
Fuelcost	2W		Total	USDm	13	13	14	15	16	17	18	18	19	20	21
Fuelcost	Bus		Total	USDm	25	29	33	34	38	41	44	47	51	54	57
Fuelcost	HDV small		Total	USDm	41	44	46	49	51	53	56	58	61	63	65
Fuelcost	Small cargo		Total	USDm	2	2	2	2	2	2	2	2	2	2	2
Fuelcost	Total			USDm	2 488	2683	2878	2946	3 140	3 3 3 3	3527	3 659	3791	3984	4 177

2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
1 612	1 676	1 741	1 805	1 870	1 934	1 999	2 0 6 3	2 127	2 192
22	22	23	24	25	26	26	27	28	29
60	63	66	69	72	76	79	82	85	88
68	70	73	75	77	80	82	85	87	89
3	3	3	3	3	3	3	3	3	3
4 212	4 337	4 463	4 649	4 836	5 023	5 1 4 8	5 274	5 460	5 647
22	22	23	24	25	26	26	27	28	29
60	63	66	69	72	76	79	82	85	88
68	70	73	75	77	80	82	85	87	89
3	3	3	3	3	3	3	3	3	3
4370	4 502	4 6 3 4	4828	5 021	5 2 1 4	5 3 4 6	5 478	5 671	5 864

Type d'impact: POLLUTION DE L'AIR

Dans ce cas, les effets de la pollution atmosphérique sur la santé sont obtenus à partir du comportement des décès prématurés et des années de vie perdues en raison de la pollution atmosphérique, dont les valeurs sont indiquées dans le tableau 17, et la relation entre les deux paramètres est illustrée dans la figure 8.

Tableau 17. Décès prématurés et années de vie perdues. Scénario BAS

		Unit	2020 - 2040	
Air pollution	Premature deaths	numbe	13 192	Results_AIR_PreDeaths1
Air pollution	Years of life lost	total yε	110 446	Results_AIR_Yearslost1
Air pollution	Health impact costs	USDk	6 596 156	

Annual air pollution health impact

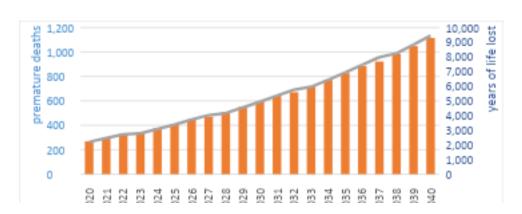


Figure 7: Impact de la pollution atmosphérique annuelle sur la santé. Scénario BAS

Les valeurs de la pollution atmosphérique sur l'ensemble de la période et le coût annuel des effets de la pollution atmosphérique sur la santé sont présentés respectivement dans le tableau 18 et la figure 9.

Tableau 18. Résultats de la pollution de l'air. Scénario BAS

Air pollution results tables

		Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Air pollution	Premature deaths	Premature deaths numbe	269	298	329	344	377	412	449	470	510	552	595
Air pollution	Years of life lost	Years of life lost total yε	2200	2458	2716	2786	3 077	3 383	3715	4029	4166	4542	4 937
Air pollution	Health impact costs	Health impact costs USDk	134 281	148945	164 258	172 141	188 653	205 814	224318	234904	254910	275 827	297 682

2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
642	670	721	773	828	885	922	984	1 048	1 115
5 359	5 7 6 3	5 960	6 437	6 937	7 467	7 977	8 242	8 836	9 457
320 982	335 169	360 281	386 483	413 804	442 689	461 036	492 012	524 235	557 731

Annual cost of air pollution health impacts

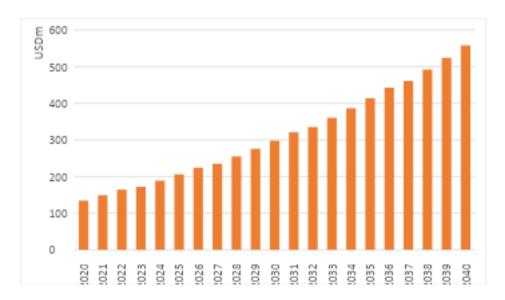
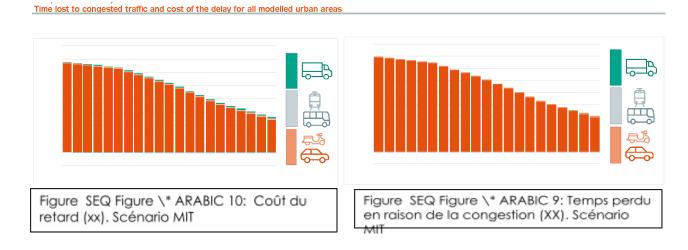



Figure 8: Coût annuel des effets de la pollution de l'air sur la santé (en milliers USD). Scénario BAS

4.2- Avantages supplémentaires grâce aux mesures d'atténuation (scénario MIT) Comme pour le scénario BAS, les résultats du scénario MIT sont présentés.

Type d'impact : CONGESTION ROUTIÈRE

En ce qui concerne le temps perdu en raison de l'encombrement du trafic et le coût du retard pour les zones urbaines, les résultats sont présentés dans les figures 10 et 11.

Les tableaux 19 et 20 présentent les valeurs annuelles des retards pour l'ensemble de la période, pour chaque type de véhicule, ainsi que le coût total des retards pour ce scénario.

Tableau 19. Retard annuel par type de véhicule (h). Scénario MIT

Time lost to congestion

Annual delay l	by vehicl Vehicle Type	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Delay	LDV	Delay_LDV h	334 475 679	330 237 608	325 999 537	321 761 466	317 523 395	313 285 324	301 468 064	289 650 803	277 833 543	266 016 283	254 199 023
Delay	2W	Delay_2W h	3 492 420	3 492 422	3 492 423	3 492 424	3 492 425	3 492 426	3 492 844	3 493 262	3 493 680	3 494 098	3 494 518
Delay	Bus	Delay_Bus h	0	0	0	0	0	0	0	0	0	0	(
Delay	Light rail	Delay_Light rail h	-478237	-490483	-502728	-514974	-527219	-539465	-551711	-563956	-576202	-588447	-600693
De lay	Rail	Delay_Rail h	0	-58 860	-117720	-176 580	-235 440	-294300	-295 807	-297314	-298 821	-300 328	-301 835
Delay	HDV	Delay_HDV h	2 781 962	2767560	2714993	2 662 426	2 609 859	2557292	2715327	2873362	3 031 396	3 189 431	3 3 4 7 4 6 6
Delay	Sm all cargo	Delay_Small cargo h	0	0	0	0	0	0	0	0	0	0	(
Delay	Total	Delay Total h	340	335	331	327	322	318	306	295	283	271	260

2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
238 817 180	223 435 336	208 053 493	192 671 649	177 289 806	166 236 676	155 183 547	144 130 418	133 077 289	122 024 160
3 452 842	3 411 169	3 369 496	3 327 823	3 810 013	4 057 647	4 305 281	4 552 916	4 800 550	5 048 185
0	0	0	0	0	0	0	0	0	0
-612939	-625184	-637430	-649675	-661921	-674167	-686412	-698658	-710904	-723149
-303 343	-304 850	-306 357	-307 864	-309 371	-310 878	-312385	-313 893	-315 400	-316 907
3 505 501	3 663 536	3 821 570	3 979 605	4 137 640	4 295 675	4 453 710	4611744	4769779	4927814
0	0	0	0	0	0	0	0	0	0
244	229	2 14	199	18 4	173	16 2	152	14 1	13 0

Tableau 20. Coût total du retard (milliers de USD). Scénario MIT

Cost of time lost to congestion

Total cost of delay	Vehicle Type		Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Delay cost	LDV	Delay cost_LDV	USDk	395 923	390 906	385 890	380 873	375 856	370 840	356 851	342863	328 875	314 887	300 898
Delay cost	2W	Delay cost_2W	USDk	4 134	4134	4 134	4134	4 134	4 134	4 135	4135	4 136	4 136	4137
Delay cost	Bus	Delay cost_Bus	USDk	-	-		-	-	-	-	-	-	-	-
Delay cost	Light rail	Delay cost_Light rail	USDk	- 566	- 581	- 595	- 610 -	624	- 639 -	653 -	668 -	682 -	697 -	711
Delay cost	Rail	Delay cost_Rail	USDk	-	-	-	-	-	-	-	-	-	-	-
Delay cost	HDV	Delay cost_HDV	USDk	-										-
Delay cost	Sm all cargo	Delay cost_Small cargo	USDk	-	-	-	-	-	-	-	-	-	-	-
Delay cost	Total	Delay cost_Total	USDk	399 491	394 460	389 429	384 397	379 366	374 335	360 333	346 331	332 328	318 326	304 324

	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
	282 691	264 483	246 275	228 068	209 860	196 776	183 693	170 609	157 525	144 441
	4 087	4 038	3 989	3 939	4 5 1 0	4 803	5 096	5 389	5 682	5 9 7 6
	-	-	-	-	-	-	-	-	-	-
-	726	- 740	- 755	- 769	- 784	- 798	- 813	- 827	- 842	- 856
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-
	286 052	267 781	249 509	231 238	213 587	200 781	187 976	175 171	162 366	149 561

Type d'impact: ACCIDENTS DE LA CIRCULATION

Ce type d'impact présente le même comportement que dans le scénario BAS, avec une légère tendance à la croissance sur l'ensemble de la période avec une augmentation significative du coût annuel moyen des accidents et de chacun de leurs éléments, comme le montre le tableau 21 et figure 12.

Tableau 21. Coût annuel moyen des accidents de la route (milliers de USD). Scénario MIT

cost of road acci	dents	Unit	2020 - 2040	
Accidents	Fatalities	USDk	244 565	Acc_Fatalities_2
Accidents	Nonfatal injuries	USDk	67 634	Acc_Nonfatal_2
Accidents	Property damage cost	USDk	10 150	Acc_Damage_2
Accidents	Medical costs	USDk	6 282	Acc_Medical_2
Accidents	Total	USDk	328 630	Acc_Total_2

Cost of road accidents by type of impact

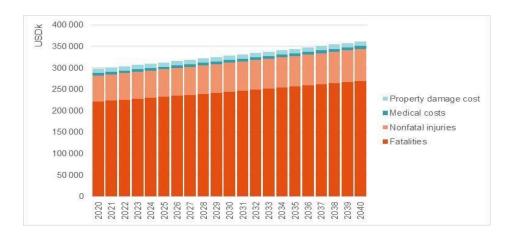


Figure 11: Coût annuel moyen des accidents de la route

Type d'impact: ÉCONOMIES DE CARBURANT

De même, dans ce scénario MIT, les figures 13 et 14 montrent la consommation annuelle de carburant pour chacune des années de l'étude et ses coûts, où l'on observe la prédominance des modes de transport individuel contrairement avec les politiques mises en œuvre dans le pays pour l'introduction des véhicules électriques de manière majoritaire dans ce mode de transport.

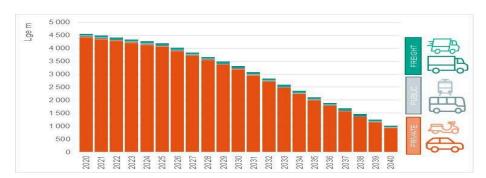


Figure 12: Consommation annuelle de carburant (milliers de litres d'essence). Scénario MIT

Les comportements montrés pour la consommation et les coûts tendent à diminuer avec le temps, contrairement avec l'incorporation progressive de nouveaux véhicules électriques dans chaque catégorie ou groupe jusqu'à la fin de la période.

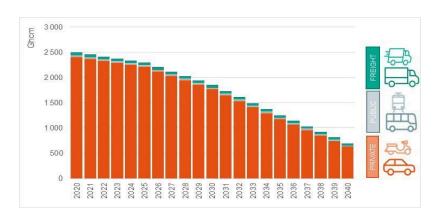


Figure 13: Coût du carburant (en milliers d'écus). Scénario MIT

La structure des combustibles montre l'introduction et l'utilisation de l'électricité, une caractéristique clé de ce scénario d'atténuation dans le secteur, jusqu'à ce que tous les autres combustibles soient complètement remplacés à la fin de la période d'étude (figure 15).

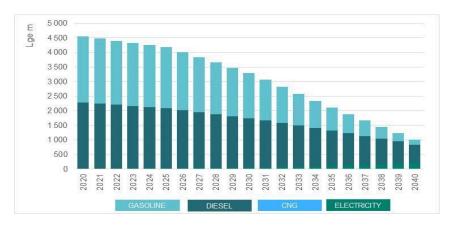


Figure 14: Structure de la consommation de carburant (milliers de litres d'essence). Scénario MIT

Les tableaux 22 et 23 montrent la consommation et les coûts agrégés par véhicule et par type de carburant, ainsi que les valeurs totales pour chacun d'entre eux, pour toutes les années de la période.

Tableau 22. Consommation de carburant (milliers de litres d'essence). Scénario MIT

Fuel consumption	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Consumption LDV	Lge m	-	5	10	16	21	26	31	36	42	47	52
Consumption LDV	Lge m	2 177	2 133	2 090	2 046	2003	1959	1 886	1 814	1 741	1 669	1596
Consumption LDV	Lge m	2 234	2 200	2 166	2 132	2098	2064	1 957	1 851	1 744	1 638	1531
Consumption 2W	Lge m	31	30	29	28	28	27	26	25	24	23	22
Consumption Bus	Lge m	36	35	34	34	33	32	31	31	30	29	30
Consumption Light rail	Lge m	7	8	8	8	8	8	9	9	9	9	9
Consumption Rail	Lge m	-	0	0	1	1	1	1	1	1	1	1
Consumption HDV	Lge m	59	59	59	58	58	57	57	57	56	56	56
Consumption Small cargo	Lge m	4	4	4	3	3	3	3	3	3	3	2
Consumption LDV	Lge m	4 410	4 338	4 266	4 193	4121	4049	3875	3 701	3 5 2 7	3 353	3179
Consumption 2W	Lge m	31	30	29	28	28	27	26	25	24	23	22
Consumption Bus	Lge m	36	35	34	34	33	32	31	31	30	29	30
Consumption Light rail	Lge m	7	8	8	8	8	8	9	9	9	9	9
Consumption Rail	Lge m	-	0	0	1	1	1	1	1	1	1	1
Consumption HDV	Lge m	59	59	59	58	58	57	57	57	56	56	56
Consumption Small cargo	Lge m	4	4	4	3	3	3	3	3	3	3	2
Consumption Total	Lge m	4 548	4474	4 399	4 3 2 5	4251	4177	4 001	3 826	3 650	3 4 7 4	3 300
Consumption Bectricity	Lge m	-	5	11	16	22	27	32	37	43	48	53
Consumption Diesel	Lge m	2 279	2 235	2 190	2 146	2101	2057	1 983	1 910	1837	1 763	1691
Consumption Gasoline	Lge m	2 269	2 234	2 199	2 163	2128	2093	1 986	1 878	1 771	1 663	1555

Fuel consum ption	Unit	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Consumption LDV	Lge m	62	73	83	94	104	125	146	166	187	208
Consumption LDV	Lge m	1 500	1 405	1 309	1 213	1117	1 0 0 6	894	782	670	559
Consumption LDV	Lge m	1 378	1 225	1 072	919	766	643	521	398	276	153
Consumption 2W	Lge m	21	19	18	17	15	14	12	11	9	8
Consumption Bus	Lge m	29	29	28	27	27	26	25	24	23	22
Consumption Light rail	Lge m	10	10	10	10	10	10	11	11	11	11
Consumption Rail	Lge m	1	1	1	1	1	1	1	1	1	1
Consumption HDV	Lge m	55	55	55	54	54	53	53	53	52	32
Consumption Small cargo	Lge m	2	2	2	2	2	1	1	1	1	11
Consumption LDV	Lge m	2 941	2 702	2 464	2 225	1987	1773	1560	1 347	1 133	920
Consumption 2W	Lge m	21	19	18	17	15	14	12	11	9	8
Consumption Bus	Lge m	29	29	28	27	27	26	25	24	23	22
Consumption Light rail	Lge m	10	10	10	10	10	10	11	11	11	11
Consumption Rail	Lge m	1	1	1	1	1	1	1	1	1	1
Consumption HDV	Lge m	55	55	55	54	54	53	53	53	52	32
Consumption Small cargo	Lge m	2	2	2	2	2	1	1	1	1	11
Consumption Total	Lge m	3 059	2 818	2577	2 3 3 7	2096	1 880	1 6 6 3	1 447	1 231	1 005
Consumption Bectricity	Lge m	64	74	84	95	105	126	147	168	188	209
Consumption Diesel	Lge m	1 595	1 498	1 401	1 305	1 208	1 095	982	870	757	624
Consumption Gasoline	Lge m	1 401	1 246	1 092	937	783	658	534	410	286	172

Tableau 23. Coût du carburant (en milliers d'écus). Scénario MIT

Fuel cost			2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Fuel cost	LDV	USDm	-	5	9	14	19	23	28	32	37	42	46
Fuel cost	LDV	USDm	1 501	1471	1441	1411	1 381	1 351	1 301	1 251	1201	1 151	1 101
Fuel cost	LDV	USDm	902	889	875	861	847	834	791	748	705	662	619
Fuel cost	2W	USDm	13	12	12	11	11	11	10	10	10	9	9
Fuel cost	Bus	USDm	25	24	24	23	23	22	22	21	21	20	21
Fuel cost	Light rail	USDm	5	5	5	6	6	6	6	6	6	6	6
Fuel cost	Rail	USDm	-	0	0	1	1	1	1	1	1	1	1
Fuel cost	HDV	USDm	41	41	40	40	40	40	39	39	39	39	38
Fuel cost	Small cargo	USDm	2	1	1	1	1	1	1	1	1	1	1
Fuel cost	LDV	USDm	2 404	2 364	2 3 2 5	2 286	2 247	2 208	2 119	2 031	1943	1 854	1 766
Fuel cost	2W	USDm	13	12	12	11	11	11	10	10	10	9	9
Fuel cost	Bus	USDm	25	24	24	23	23	22	22	21	21	20	21
Fuel cost	Light rail	USDm	5	5	5	6	6	6	6	6	6	6	6
Fuel cost	Rail	USDm	-	0	0	1	1	1	1	1	1	1	1
Fuel cost	HDV	USDm	41	41	40	40	40	40	39	39	39	39	38
Fuel cost	Small cargo	USDm	2	1	1	1	1	1	1	1	1	1	1
Fuel cost	Total	USDm	2 488	2448	2408	2 3 6 8	2 328	2 288	2 199	2 109	2020	1 930	1 842

Fuel cost			2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Fuel cost	LDV	USDm	56	65	74	83	93	111	130	148	167	185
Fuel cost	LDV	USDm	1 035	969	903	837	771	694	616	539	462	385
Fuel cost	LDV	USDm	557	495	433	371	309	260	210	161	111	62
Fuel cost	2W	USDm	8	8	7	7	6	6	5	4	4	3
Fuel cost	Bus	USDm	20	20	19	19	18	18	17	16	16	15
Fuel cost	Light rail	USDm	7	7	7	7	7	7	7	7	8	8
Fuel cost	Rail	USDm	1	1	1	1	1	1	1	1	1	1
Fuel cost	HDV	USDm	38	38	38	37	37	37	37	36	36	22
Fuel cost	Small cargo	USDm	1	1	1	1	1	1	1	0	0	4
Fuel cost	LDV	USDm	1 647	1 528	1 410	1 291	1 172	1 064	956	848	740	632
Fuel cost	2W	USDm	8	8	7	7	6	6	5	4	4	3
Fuel cost	Bus	USDm	20	20	19	19	18	18	17	16	16	15
Fuel cost	Light rail	USDm	7	7	7	7	7	7	7	7	8	8
Fuel cost	Rail	USDm	1	1	1	1	1	1	1	1	1	1
Fuel cost	HDV	USDm	38	38	38	37	37	37	37	36	36	22
Fuel cost	Small cargo	USDm	1	1	1	1	1	1	1	0	0	4
Fuel cost	Total	USDm	1722	1602	1 483	1 363	1 243	1 133	1 024	914	805	686

Type d'impact: POLLUTION DE L'AIR

Comme dans le cas des impacts précédents, dans le scénario MIT, les valeurs de la pollution atmosphérique sur la santé sont inférieures à celles du scénario BAS, avec un nombre de décès prématurés deux fois plus élevé, ce qui a une influence décisive sur la réduction des coûts associés, comme le montre le tableau 24.

Tableau 24. Décès prématurés et années de vie perdues. Scénario du MIT

		Unit	2020 - 2040	
Air pollution	Premature deaths	number (4 801	Results_AIR_PreDeaths2
Air pollution	Years of life lost	total yea	39719	Results_AIR_Yearslost2
Air pollution	Health impact costs	thousand	2 400 448	

La figure 16 montre les valeurs decroissantes des impacts sanitaires annuels de la pollution atmosphérique pour le scénario MIT par rapport au scénario BAS, les décès prématurés et les années de vie perdues étant tous deux decroissants; les valeurs numériques sont détaillées dans le tableau 25.



Figure 15: Impact annuel de la pollution de l'air sur la santé. Scénario du MIT

Tableau 25. Résultats de la pollution de l'air. Scénario MIT

Air pollution results tables													
		Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Air pollution	Premature deaths	number of death	269	271	273	276	278	280	276	272	268	263	258
Air pollution	Years of life lost	total years	2251	2290	2328	2 282	2318	2352	2338	2 3 5 6	2 231	2 2 0 3	2168
Air pollution	Health impact costs	thousand USD	134 281	135 511	136 681	137 785	138 820	139 783	138 093	136 151	133 946	131 467	128778

		Unit	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Air pollution	Premature deaths	number of death	247	235	223	209	195	179	162	144	124	101
Air pollution	Years of life lost	total years	2 086	2004	1849	1739	1 617	1 484	844	1158	991	831
Air pollution	Health impact costs	thousand USD	123 459	117 670	111 395	104 618	97 321	89 396	80 888	71778	62 049	50 579

Les coûts annuels des impacts de la pollution atmosphérique sont présentés dans la figure 17.

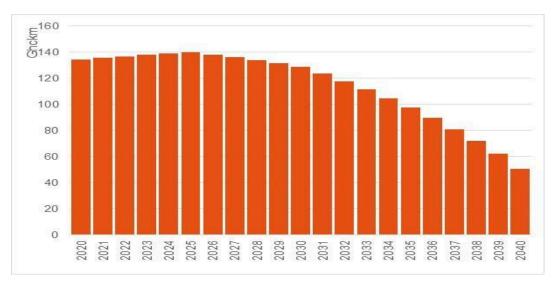


Figure 16: Coût annuel des effets de la pollution de l'air sur la santé (en milliers d'euros). Scénario MIT

4.3- Total des avantages supplémentaires pour les deux scénarios

Cette synthèse présente les résultats globaux pour l'ensemble de la période 2020-2040, en tenant compte des deux scénarios évalués, pour chacun des types d'impacts.

En guise de résumé, la figure 18 présente graphiquement les totaux pour les impacts qui ont montré des valeurs significatives. Dans le cas de l'impact lié aux accidents, n'a pas rapporté de valeurs significatives permettant un regroupement, de sorte que l'analyse doit être effectuée sur la base des différents scénarios.

Figure 17: Résultats agrégés pour la période 2020-2040 pour la congestion, l'économie de carburant et la pollution atmosphérique.

En ce qui concerne l'impact de la congestion, les valeurs des coûts annuels évités de la congestion et des pertes de temps annuelles évitées de la congestion sont indiquées dans les figures 19 et 20, respectivement.

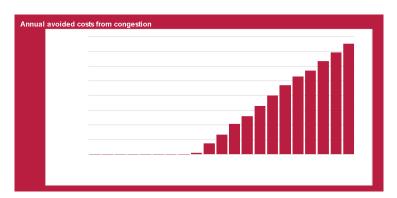
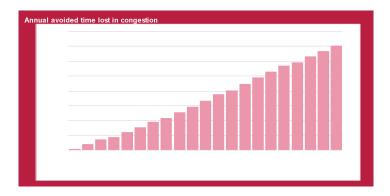



Figure 18: Coûts annuels évités de la congestion (milliers de USD).

Figure 19: Temps annuel évité dans les embouteillages (heures)

En ce qui concerne l'impact associé aux économies de carburant, la figure 21 montre les valeurs des économies annuelles de carburant sur la période d'étude.

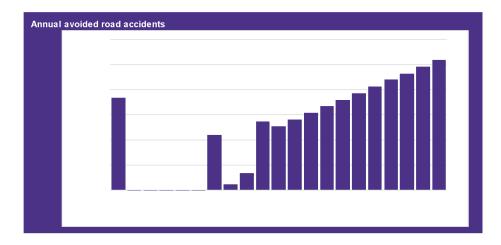


Figure 20. Économies annuelles de carburant (en milliers d'euros).

En ce qui concerne l'impact de la pollution de l'air, la figure 22 présente les impacts sanitaires annuels évités dus à la pollution de l'air, exprimés en années de vie perdues.

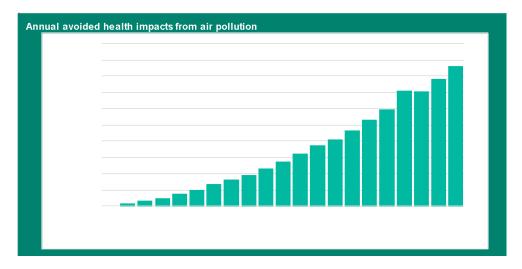


Figure 21: Impacts annuels évités sur la santé dus à la pollution de l'air (années de vie perdues).

Enfin, les valeurs totales des coûts annuels évités grâce à la mise en œuvre des mesures d'atténuation évaluées pour le secteur sur l'ensemble de la période sont présentées (figure 23), ainsi que les coûts annuels évités pour chaque type d'impact (figure 24).

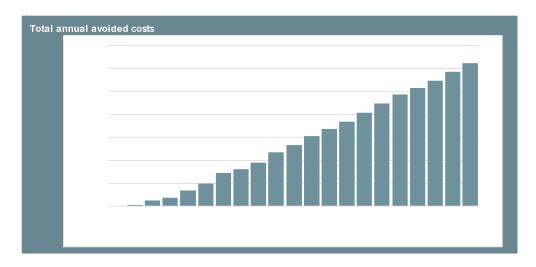


Figure 22: Total des coûts annuels évités (milliers d'euros).

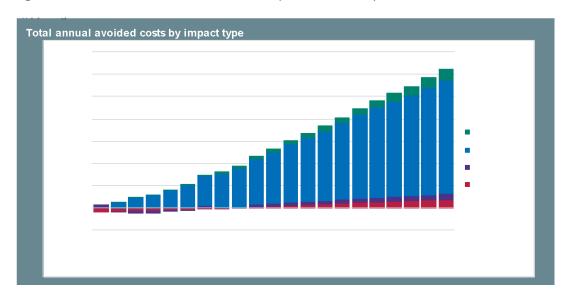


Figure 23: Total des coûts annuels évités par type d'impact (en milliers d'euros).

V- Conclusions

L'étude a déterminé les avantages environnementaux supplémentaires de la mise en œuvre des mesures d'atténuation contenues dans la contribution déterminée au niveau national (CDN) du pays et liées à l'introduction de véhicules électriques dans le transport automobile entre 2020 et 2040. Ces résultats permettront d'envisager l'incorporation de co-bénéfices pour accroître l'ambition du nouvel objectif fixé dans le secteur.

Les calculs effectués à l'aide de l'outil TRACE, sur la base des données et des hypothèses supposées, montrent que les avantages les plus importants proviennent des économies de carburant, ce qui est cohérent avec l'action climatique évaluée consistant à remplacer l'utilisation de combustibles fossiles dans le transport automobile par des véhicules électriques, ce qui se traduit par d'importantes économies de carburant.

Les incidences liées à la congestion routière font état d'une diminution des retards et du temps perdu en raison de la congestion routière, bien qu'il ne s'agisse pas de valeurs significatives. Un comportement similaire a été observé pour l'impact lié aux accidents de la route, qui n'a pas varié de manière significative entre les deux scénarios, bien que la diminution des blessures non mortelles soit remarquable.

En ce qui concerne la pollution de l'air et son impact sur la santé, les résultats montrent une diminution significative par rapport au scénario de base, basée sur une réduction des décès prématurés et des années de vie perdues pour cette cause.

Les résultats obtenus sont considérés comme préliminaires, nécessitent un affinement des données utilisées et sont soumis à l'évaluation d'experts du secteur. Une fois les résultats de cette étude ajustés, d'autres évaluations sont prévues pour déterminer les co-bénéfices de l'incorporation de nouvelles mesures d'atténuation dans d'autres branches du transport, telles que les chemins de fer.

Références

- Annuaire statistique 2022, Conakry, NOVEMBRE 2023;
- Annuaire statistique du secteur des transports 2020, edition septembre 2021;
- Annuaire statistique des transports republique de guinee, 2013
- Contribution Determinée au niveau National CDN, 2021;
- Indice harmonise des prix a la consommation (IHPC) mois d'août 2021;
- Indice harmonise des prix a la consommation (I.H.P.C.) mois de février 2010;
- Rapport annuel Electricité de Guinée (EDG), 2024
- Rapport provisoir sur le Co-bénéfices environnementaux dans la contribution à l'atténuation du secteur des transports rapportée par Cuba dans sa NDC 2020 actualisée, 2024;
- Stratégie Nationale sur le Changement Climatique, 2019;
- (https://www.google.com/search?q=nombre+de+v%C3%A9hicules+electriques+en+quin%C3%A9e+conakry du 19/07/2025)