METODOLOGIA PARA DESARROLLAR PROYECCIONES DE EMISIONES DE GEI PARA EL SECTOR ENERGIA para ICAT-Bolivia

Proyecto: "DESARROLLO DE UN SISTEMA MRV Y SU PROSPECTIVA DE GEI PARA EL SECTOR ENERGÍA EN EL MARCO DE LAS METAS EN LAS CND DE BOLIVIA" Fase 1

Initiative for Climate Action Transparency - ICAT

METODOLOGIA PARA DESARROLLAR PROYECCIONES DE EMISIONES DE GEI PARA EL SECTOR ENERGIA para ICAT-Bolivia

Entregable #11-Producto K

AUTHORS

Freddy Arsenio Marce Ramos

COORDINADOR NACIONAL DEL PROYECTO PAÍS – ICAT

Rosa Patricia Quispe Perca

ASOCIADO NACIONAL DE APOYO PROYECTO PAÍS – ICAT

Date: 29/11/2024

DISCLAIMER

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, photocopying, recording or otherwise, for commercial purposes without prior permission of Bolivia. Otherwise, material in this publication may be used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of Bolivia and ICAT as the source. In all cases the material may not be altered or otherwise modified without the express permission of the Bolivia.

PREPARED UNDER

The Initiative for Climate Action Transparency (ICAT), supported by Austria, Canada, Germany, Italy, the Children's Investment Fund Foundation and the Climate Works Foundation.

Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

Environment and Climate Change Canada Environnement et Changement climatique Canada

The ICAT project is managed by the United Nations Office for Project Services (UNOPS).

Tabla de contenido

1	INT	RODUCCIÓN	1
2	OBJ	ETIVOS	2
	2.1	OBJETIVO GENERAL	2
	2.2	OBJETIVOS ESPECÍFICOS	2
3	ME	ODOLOGIA	3
	3.1	REVISION DE BIBLIOGRAFIA	3
	3.2	APLICACIÓN DE GUIAS	3
4	MA	NUAL DE PROCEDIMIENTOS PARA LA ELABORACION DE PROYECCIONES DE GEI	4
	4.1	PASOS A SEGUIR EN LA HERRAMIENTA GACMO	4
5	FOF	MULACION DE ESCENARIOS	18
	5.1	ESCENARIO SIN MEDIDAS	18
	5.2	ESCENARIO CON MEDIDAS	18
	5.3	ESCENARIO CON MEDIDAS ADICIONALES	21
6	ART	ICULACION A POLITICAS DEL SECTOR ENERGIA	24
7	COI	NCLUSIONES	27
8	BIB	LIOGRAFÍA	28
9	ANE	XOS	29
	9.1	ANEXO 1 OPCIONES DE MITIGACION HERRAMIENTA GACMO	29
	9.2	ANEXO 2 OPCIONES DE MITIGACION ADICIONALES	32
	9.3	ANEXO 3 GRAFICAS DE REDUCCION DE COSTOS POR OPCION DE MITIGACION	36
	9.4	ANEXO A GUIA HERRAMIENTA LEAR	38

Índice de figuras

Figura 1. Tipo de opciones de mitigación propuestos para las metas CND del sector E	Energía.
Fuente: Herramienta GACMO, 2023	13
Figura 2 Provección de emisiones GEI todos los sectores Fuente: Herramienta GACMO 2	<i>2023</i> 23

Índice de tablas

Tabla 1. Datos necesarios para GACMO y la fuente de información probable. Fuente: Elaboración
propia (Documento I), 20244
Tabla 2. Primer cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 20235
Tabla 3. Segundo cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 20236
Tabla 4. Tercer cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 2023 2023
Tabla 5. Cuarto cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 20236
Tabla 6. Quinto cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 20236
Tabla 7. Sexto cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 20237
Tabla 8. Séptimo cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 20237
Tabla 9. Octavo cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 20237
Tabla 10. Datos balance energético Hoja 2 GACMO. Fuente: Herramienta GACMO, 20239
Tabla 11. Datos emisiones distintas a CO2 Hoja 3 GACMO. Fuente: Herramienta GACMO, 202310
Tabla 12. Opciones de mitigación Servicio de energía eléctrica. Fuente: Herramienta GACMO,
<i>2023</i> 13
Tabla 13. Datos opción Alumbrado público eficiente. Fuente: Herramienta GACMO, 202314
Tabla 14. Opciones de mitigación Hídrico. Fuente: Herramienta GACMO, 202314
Tabla 15. Datos opción Energía hidroeléctrica conectada a la red principal. Fuente: Herramienta
<i>GACMO, 2023.</i>
Tabla 16. Opciones de mitigación Solar. Fuente: Herramienta GACMO, 202315
Tabla 17. Datos opción Energía solar fotovoltaica, red amplia. Fuente: Herramienta GACMO, 2023
15
Tabla 18. Datos opción Sistemas fotovoltaicos domésticos. Fuente: Herramienta GACMO, 2023
Tabla 19. Opciones de mitigación Transporte. Fuente: Herramienta GACMO, 202316
Tabla 20. Datos opción Carros eléctricos. Fuente: Herramienta GACMO, 202317
Tabla 21. Opciones de mitigación Eólico. Fuente: Herramienta GACMO, 202317
Tabla 22. Datos opción Aerogeneradores terrestres. Fuente: Herramienta GACMO, 202317
Tabla 23. Datos por sector escenario de emisiones WOM. Fuente: Elaboración Propia a partir de
<i>GACMO, 2024.</i>
Tabla 24. Datos obtenidos de proyección de emisiones GEI escenario WOM. Fuente: Elaboración
<i>Propia a partir de GACMO, 2024</i> 18
Tabla 25. Datos de proyección sobre línea base y meta 2030 CND sector Energía, Fuente:
Elaboración Propia en base a la CND, 2024
Tabla 26. Datos por sector escenario de emisiones WEM. Fuente: Elaboración Propia a partir de
<i>GACMO, 2024</i>
Tabla 27. Datos obtenidos de proyección de emisiones GEI escenario WEM. Fuente: Elaboración
Propia a partir de GACMO, 202421
Tabla 28. Datos comparación por sector con reducciones de emisión. Fuente: Elaboración Propia
<i>a partir de GACMO, 2024</i> 21
Tabla 29. Datos obtenidos de proyección de emisiones GEI escenario WAM. Fuente: Elaboración
Propia a partir de GACMO, 202422
Tabla 30. Requisitos sobre proyecciones en el MTR, Fuente: Elaboración Propia en base a las MPD,
<i>2024</i> 24
Tabla 31. Comparación opciones de mitigación de la herramienta GACMO y metas del sector
Energía CND Fuente: Flahoración Propia 2024 26

ACRÓNIMOS

AETN: Autoridad de Fiscalización de Energía y Tecnología Nuclear

AP: Acuerdo de París

APMT: Autoridad Plurinacional de la Madre Tierra

BCB: Banco Central de Bolivia

CDE: Comisión de Desarrollo Energético

CMNUCC: Convención Marco de las Naciones Unidas para el Cambio Climático

CND: Contribuciones Nacionalmente Determinadas

GEI: Gases de Efecto Invernadero **IBT:** Informe Bienal de Transparencia

ICAT: Iniciativa para la Transparencia en la Acción Climática

INE: Instituto Nacional de Estadística

MHE: Ministerio de Hidrocarburos y Energía

MEFP: Ministerio de Economía y Finanzas Públicas **MMAyA:** Ministerio de Medio Ambiente y Agua

MPD: Modalidades, procedimientos y directrices del marco para la transparencia de las medidas y el apoyo a los que se hace referencia en el artículo 13 del Acuerdo de París, recogidas en la

decisión 18/CMA.1 y su anexo

MRV: Monitoreo, Reporte y Verificación **MTR:** Marco de Transparencia Reforzado

PCI: Poder Calorífico Inferior PIB: Producto Interno Bruto P y M: Políticas y Medidas

SIN: Sistema Interconectado Nacional

SMTCC: Sistema Plurinacional de Información y Monitoreo Integral de la Madre Tierra

VEER: Viceministerio de Electricidad y Energías Renovables **VPDE:** Viceministerio de Planificación y Desarrollo Energético

YPFB: Yacimientos Petrolíferos Fiscales Bolivianos **VMEA:** Viceministerio de Energías Alternativas

VMEER: Viceministerio de Electricidad y Energías Renovables

WAM: Escenario con medidas adicionales

WEM: Escenario con medidas **WOM:** Escenario sin medidas

1 INTRODUCCIÓN

De acuerdo a los avances del proyecto: "Desarrollo de un sistema MRV y su prospectiva de GEI para el sector Energía en el marco de las metas en las CND de Bolivia" Fase 1, se ha realizado la evaluación del marco sectorial MRV para el sector Energía (Documento C) en comparación con países de LAC, desarrollando una estructura de MRV con dos subsistemas, el Subsistema Inventario GEI y el Subsistema de Mitigación (Documento D), los mismos que se encuentran vinculados a la línea de la estructura principal del MRV propuesto para el sector Energía y detallados en sus componentes principales para su implementación (Documento E).

Se definieron los indicadores de seguimiento para las metas del sector Energía propuestas en la CND (Documento H), a partir de los mismos se busca implementar las condiciones de cálculo el seguimiento de las medidas de mitigación propuestas en dichas metas.

Se realizo la comparación de 4 herramientas para los modelos de proyección de emisiones GEI (Documento I), dos modelos con enfoque de contabilidad y dos con enfoque hibrido, a partir de este análisis contemplando las condiciones actuales de información y experiencia para el uso de herramientas se llegó a la conclusión de utilizar la herramienta GACMO (Greenhouse Gas Abatement Cost Model).

En el presente documento se establecen los parámetros, condiciones y conjunto de datos necesarios para la modelación de las proyecciones de emisiones GEI exclusivamente para el sector Energía, asimismo, se detalla el procedimiento para el uso de la herramienta y se presentan proyecciones en base a tres escenarios, con medidas (WEM), sin medidas (WOM) y con medidas adicionales (WAM) con datos recopilados del sector Energía y estadísticas propias del país de una gestión en específico que se considera de partida o inicio, para la ejecución de una prueba piloto para el mejor entendimiento de dicha herramienta.

2 OBJETIVOS

2.1 OBJETIVO GENERAL

 Realizar una guía metodológica para el desarrollo de proyecciones de emisiones de GEI para el sector Energía.

2.2 OBJETIVOS ESPECÍFICOS

- Establecer los pasos a seguir para el uso correcto de la herramienta seleccionada para modelar las proyecciones de emisiones GEI.
- Ejecutar una prueba piloto de modelación para las proyecciones de emisiones de GEI con el desarrollo para distintos escenarios.
- Establecer la articulación de la herramienta GACMO a políticas nacionales del sector Energía.

3 METODOLOGIA

Para la elaboración del presente documento se usaron las siguientes metodologías para la recopilación de información y planteamiento de las propuestas establecidas mencionadas y detalladas en los puntos siguientes.

3.1 REVISION DE BIBLIOGRAFIA

Análisis y desglose de los datos proporcionados por las guías, manuales y documentación respecto a las herramientas de modelación para el desarrollo y cálculo de las proyecciones de GEI, desarrolladas desde la iniciativa de la CMNUCC y también por instituciones que tienen los mismos objetivos sobre acciones climáticas en contra del Cambio Climático.

3.2 APLICACIÓN DE GUIAS

Decisión 18/CMA.1

La decisión 18/CMA.1, establece las Modalidades, procedimientos y directrices para el marco de transparencia para las medidas y el apoyo a que se hace referencia en el artículo 13 del Acuerdo de París (MPD).

Especialmente se toma en cuenta a la sección III de la decisión 18/CMA.1, *Información necesaria* para hacer un seguimiento de los progresos alcanzados en la aplicación y el cumplimiento de las contribuciones determinadas a nivel nacional en virtud del artículo 4 del Acuerdo de París, en esta sección existen 7 incisos de las cuales se hace énfasis en el siguiente para el desarrollo de proyecciones de GEI:

F. Proyecciones de las emisiones y la absorción de gases de efecto invernadero. En este inciso se detallan los puntos a tomar en cuenta para el cumplimiento de la comunicación de las proyecciones, donde se establece la obligatoriedad de presentar una proyección "con medidas" y la opción de presentación de proyecciones "con medidas adicionales" y "sin medidas", así como los tiempos a considerar, descripciones y la relación de dichas metas con la CND.

GUIA GACMO

A partir de la estructura de la herramienta GACMO, así como las características del conjunto de datos del sector Energía que se tiene y la información estadística que se requiere según el país, se desarrolla un procedimiento adaptado para el contexto nacional.

Se toma en cuenta el detalle de los 9 pasos que se presentan en esta guía, para la explicación respectiva de su procedimiento y las condiciones necesarias para establecer un buen manejo y aplicación para la modelación de las proyecciones requeridas bajo el MTR.

4 MANUAL DE PROCEDIMIENTOS PARA LA ELABORACION DE PROYECCIONES DE GEI

GACMO es una herramienta de proyección de emisiones de gases de efecto invernadero desarrollada durante más de veinte años por el Centro del Clima de Copenhague del PNUMA.

Para el correcto funcionamiento de la herramienta, los datos necesarios serán descritos en el desarrollo de los pasos a seguir en los puntos siguientes, en la siguiente tabla se presenta un resumen de las posibles fuentes de información para cada requisito de datos a introducir en la herramienta:

DATO	POSIBLES FUENTES DE INFORMACION
Datos de población	INE
PIB	INE
Tipo de cambio moneda nacional a dólar	ВСВ
Precios combustibles primarios	YPFB
Precios combustibles derivados	YPFB, ANH
Precio electricidad e información de la red	AETN, CNDC
Datos de consumo por tipo de combustibles	VPDE (BEN)
Consumo de energía eléctrica	AETN, CNDC
Producción de energía eléctrica (Consumo de combustibles fósiles)	YPFB, CNDC
Producción de energía eléctrica (Por fuentes de energía renovable)	VMEER, CNDC
Tasas de crecimiento	INE, MHE

Tabla 1. Datos necesarios para GACMO y la fuente de información probable. Fuente: Elaboración propia (Documento I), 2024

Tomando en cuenta la Guía de la herramienta GACMO, se desarrollan los pasos a seguir en los puntos siguientes.

4.1 PASOS A SEGUIR EN LA HERRAMIENTA GACMO

La interfaz de la herramienta está diseñada para que el usuario sea llevado desde la primera hoja de cálculo a la última hoja de cálculo siguiendo un orden lógico.

Al utilizar la herramienta GACMO, el usuario solo debe insertar datos nuevos en las celdas

resaltadas en amarillo. Algunas de estas celdas ya contienen valores predeterminados. Estos valores podrán modificarse cuando el usuario lo considere necesario. Al insertar datos en el modelo, es muy importante insertar los mismos según la unidad indicada en la herramienta para cada uno de ellos.

4.1.a PASO 1: HOJA DE SUPUESTOS

Esta hoja de cálculo incluye ocho cuadros con todos los datos básicos del país, precios de energía y datos técnicos que la herramienta GACMO necesita como entrada para los cálculos. Esta hoja deberá ser complementada por el usuario.

El usuario debe considerar todas las celdas de los ocho cuadros que se muestran en la hoja. Es posible que algunas de estas celdas ya incluyan valores predeterminados para algunos datos, pero el usuario debe intentar ajustar esos valores con valores nacionales. Se debe tomar en cuenta que los datos insertados en esta hoja son transferidos automáticamente por la herramienta GACMO a las otras hojas donde se utilizan para los cálculos.

Los datos a insertar en esta hoja son:

DESCRIPCIÓN	DATO A INTRODUCIR	CELDA	
País	Nombre del país/región geográfica de estudio.	C9	
	En este caso es BOLIVIA	CJ	
Año de inicio (último	El año correspondiente al año del balance energético que se utilizará	C10	
inventario)	en la hoja "Balance del año de inicio"		
Moneda	Moneda del país	C11	
Tipo de cambio	El tipo de cambio de la moneda del país a USD.	C12	
utilizado (1USD=)	Para el tipo de cambio se debe utilizar el dato publicado en el BCB.		
Tasa de descuento	La tasa de interés utilizada en el análisis de flujos de efectivo		
	descontados (DCF) para determinar el valor presente de los flujos de efectivo futuros.	C13	
	Los valores para la tasa de descuento se deben considerar según los establecidos por el MEFP.	213	

Tabla 2. Primer cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 2023

Los datos anteriores deben ser introducidos por el usuario de acuerdo al año de inicio considerado para realizar el análisis.

DESCRIPCIÓN	DATO A INTRODUCIR	CELDA
Petróleo crudo	Los precios de combustibles para el petróleo crudo para el período futuro. Los valores para los precios de combustibles se presentan en la página web del MHE.	C17
GNL	Los precios de combustibles para el gas natural licuado (GNL) para el período futuro.	C19

	Para este caso se debe ajustar el valor de GNL o modificar la celda C20 con el valor del precio para Gas Natural.	
Carbón	Los precios de combustibles para el carbón para el período futuro.	C21
	Este valor no se lo considera para el caso de Bolivia.	CZT

Tabla 3. Segundo cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 2023

Se debe tomar en cuenta que las unidades para esos datos son, respectivamente, US\$/bbl, US\$/MBTU y US\$/tonelada. El modelo utiliza los datos anteriores como precios constantes del combustible y como estimaciones de los insumos en pasos de tiempo futuros.

DESCRIPCIÓN	DATO A INTRODUCIR	CELDA
Precio del destilado/precio del petróleo crudo (litro/litro)	Relación entre el precio del producto destilado y el precio del petróleo crudo. Se deben insertar datos sobre los combustibles fósiles que forman parte del balance energético del país. Se debe tener en cuenta que la herramienta GACMO incluye valores predeterminados para esos datos, pero el usuario debe ajustarlos con datos específicos del país.	C27 a J27
Valor calorífico del combustible [GJ/t]	Contenido energético de los combustibles fósiles. Se deben insertar datos sobre los combustibles fósiles que forman parte del balance energético del país. Tenga en cuenta que la herramienta GACMO incluye valores predeterminados para esos datos, pero el usuario puede ajustarlos si lo considera necesario.	C31 a O31
	Para el caso del sector Energía se debe seguir utilizando los valores de PCI de cada combustible como describe la Metodología OLADE para la elaboración del BEN.	

Tabla 4. Tercer cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 2023

En el tercer cuadro también se calculan automáticamente los valores de precios en USD/litro y USD/GJ, los datos de densidades se encuentran preestablecidos para los combustibles mencionados en el cuadro.

DESCRIPCIÓN	DATO A INTRODUCIR	CELDA
US\$/kWh	Precio actual de la electricidad sin impuestos ni subsidios.	
	Se considera como valor base de referencia a los costos de Generación Distribuida de acuerdo al DS 4477.	C35

Tabla 5. Cuarto cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 2023

DESCRIPCIÓN	DATO A INTRODUCIR	CELDA
Margen combinado (CM) solar y eólico	Factor de emisión de red utilizado por GACMO en las hojas de tecnología para estimar las emisiones para la opción de referencia (sin ninguna opción de mitigación implementada)	C38
Margen combinado (CM) otros	Para el caso del sector Energía se deben utilizar valores de acuerdo a la Guía para la cuantificación de la reducción de las emisiones actuales y futuras de la inversión en energía renovable y eficiencia energética en Bolivia – Ministerio de Energías, GIZ, 2019.	C39

Tabla 6. Quinto cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 2023

Para el uso de la herramienta GACMO a escala nacional, el usuario especifica el **factor de emisión** promedio de la red nacional.

En el caso de que se conozca la ubicación geográfica de la opción de mitigación, se recomienda especificar el factor de emisión de la red local para esta opción de mitigación. El usuario puede indicar el valor correspondiente del factor de emisiones de la red en la respectiva ficha de tecnología.

Para el uso de la herramienta GACMO a nivel de ciudad o estado, se debe utilizar el factor de emisión de la red local específico.

Las pérdidas de la red eléctrica y consumo propio es un porcentaje de pérdidas de la red eléctrica. Tenga en cuenta que este valor será importado automáticamente por la herramienta GACMO desde la hoja de Balance Energético.

DESCRIPCIÓN	DATO A INTRODUCIR	CELDA
Factores de emisión	Factores de emisión de los diferentes combustibles fósiles utilizados	
sectoriales (kg	en el balance energético del país. Se debe tomar en cuenta que la	
GEI/GJ) de CO2	herramienta GACMO ya incluye valores predeterminados basados en	D45 a
	las metodologías del IPCC. Sin embargo, el usuario puede modificar	D53
	estos valores si hay factores de emisión específicos del país	
	disponibles.	

Tabla 7. Sexto cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 2023

Factores de emisión específicos del sector (kg GEI/GJ) para CH_4 y N_2O = Factores de emisión para CH_4 (metano) y N_2O (óxido nitroso). Tenga en cuenta que la herramienta GACMO ya incluye valores predeterminados basados en las metodologías del IPCC (AR5). La herramienta convertirá estos valores de CH_4 y N_2O en equivalente de CO_2 utilizando el potencial de calentamiento global (GWP) para estos gases mencionados en la siguiente tabla.

DESCRIPCIÓN	DATO A INTRODUCIR	CELDA
Potenciales de calentamiento global	PCA para CH ₄	F64
	PCA para N₂O	F65

Tabla 8. Séptimo cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 2023

Los valores de GWP también son valores predeterminados basados en las metodologías del IPCC (AR5).

DESCRIPCIÓN	DATO A INTRODUCIR	CELDA
Población (miles)	Población en el año de inicio.	C88
	En base a los datos obtenidos del INE.	Coo
PIB (MUS\$ corrientes)	Producto Interno Bruto (PIB) del año de inicio.	C89
	En base a los datos obtenidos del INE.	C09

Tabla 9. Octavo cuadro Hoja 1 GACMO. Fuente: Herramienta GACMO, 2023

Una vez que se hayan insertado todos los datos en las tablas anteriores, puede pasar al siguiente paso haciendo clic en "Ir al paso 2".

4.1.b PASO 2: DATOS DEL BALANCE ENERGÉTICO

Esta hoja de cálculo incluye los datos energéticos desagregados por sector y actividad del año de inicio. Esta hoja deberá ser complementada por el usuario.

El usuario deberá rellenar una de las dos tablas con los datos de:

- Energía expresados en Terajulios (TJ)
- ❖ Volumen/masa en términos de millones de metros cúbicos (millones de m³) y mega toneladas (Mt)

En el caso de Bolivia, los datos publicados en el BEN se presentan en kbep, por lo tanto, se utiliza el factor de conversión de 1kbep = 5.81 TJ¹ para cada combustible, con este procedimiento se evita el uso del valor de PCI de cada combustible ya que los mismos fueron considerados para la obtención del factor de conversión para obtener el valor en kbep.

Para el sector Energía, se deben considerar los datos del BEN en el ámbito Consumo final y las actividades de: Industrial, Transporte, Residencial, Construcción y otros, Comercial, servicios y público y por último Agro, pesca y minería. Los datos en el BEN de la actividad Consumo no energético se debe considerar para el sector Procesos Industriales y Uso de Productos.

Con la realización de lo anterior se evita que la herramienta GACMO haga uso de los valores de Poder calorífico establecidos en la hoja de supuestos.

Para determinar la unidad, el usuario elige la tabla relevante haciendo clic en "Seleccionar unidad para entrada" y seleccionando Valor de energía o Valor de volumen/masa.

La estructura de las dos tablas Balance energético en TJ - País Bolivia - Balance energético del año de inicio en Mt y Millones de m³ es la misma. Incluyen la lista de categorías de actividad para uso de energía en la columna B. Para cada categoría de actividad relevante para el contexto nacional del país, el usuario debe introducir la cantidad de cada combustible fósil utilizado para esta categoría específica expresada en la unidad seleccionada (TJ o Millones de m³/Mt). Los datos sólo deben insertarse en las celdas amarillas. En caso de que una categoría de actividad no sea relevante para el contexto nacional, no se deben insertar datos en la celda correspondiente.

Una vez que el usuario ha insertado los datos del balance energético en la unidad seleccionada anteriormente, la herramienta GACMO calcula automáticamente el balance energético en 1000 toneladas de equivalente de petróleo (ktep). La tabla del balance energético expresado en ktep puede ser vista u ocultada por el usuario haciendo clic en "Ver/Ocultar tabla en valores ktep".

¹ Se deben utilizar los factores de conversión establecidos en la Guía M-5, Metodología de conversión de unidades OLADE.

DESCRIPCIÓN	DATO A INTRODUCIR	CELDA	
Balance energético en la unidad seleccionada	Esta tabla corresponde al balance energético del año de inicio. El usuario deberá introducir el consumo de diferentes combustibles para cada categoría de actividad relevante y de los que se tengan datos al respecto en el BEN	D19-40 O19-40	а
Balance eléctrico	Esta tabla corresponde al balance eléctrico del año de inicio. El usuario deberá introducir el consumo de electricidad en GWh para cada categoría de actividad relevante para el contexto nacional del país	D103 D122	а
del año de inicio en GWh	Producción de electricidad a partir de los diferentes tipos de combustibles fósiles. En base al Anuario estadístico de la AETN.	G105 G110	а
	Producción de electricidad a partir de fuentes renovables. En base al Anuario estadístico de la AETN.	G112 G116	a
Importación y exportación de electricidad	Datos de importación y exportación de electricidad del Año de Inicio. Este valor no se lo considera en la actualidad para el caso de Bolivia.	G119 G120	а

Tabla 10. Datos balance energético Hoja 2 GACMO. Fuente: Herramienta GACMO, 2023

Luego, la herramienta GACMO calculará la importación neta, que es la diferencia entre las importaciones totales y las exportaciones totales.

Una vez que se hayan insertado todos los datos en las tablas anteriores, el usuario puede pasar al siguiente paso haciendo clic en "Ir al paso 3". Tenga en cuenta que el botón "Ir al paso 3" solo aparece después de que se hayan completado las operaciones en el balance energético.

4.1.c PASO 3: EMISIONES DE GEI

Esta hoja de cálculo incluye datos de emisiones de GEI desagregados por sector de actividad para el año de inicio. La herramienta GACMO estima automáticamente las emisiones de CO_2 de los sectores de quema de combustibles. Las emisiones distintas de CO_2 procedentes de la quema de combustible y los sectores distintos de la combustión de combustible deben ser complementados por el usuario.

El usuario no debe insertar ni modificar los datos de la primera tabla denominada:

Emisiones de CO₂ - País X - Año de inicio.

Esta tabla incluye las estimaciones de las emisiones de CO₂ procedentes de la quema de combustible en el año de inicio. La herramienta GACMO calcula automáticamente los datos de esta tabla a partir de los datos del Balance Energético insertados en la hoja anterior.

DESCRIPCIÓN	DATO A INTRODUCIR	CELDA
procedentes de la quema de	Correspondientes a los datos de GEI, expresados en ktCO ₂ equivalentes, para cada sector o subsector según lo definido por las categorías del IPCC	D41 a D53

Tabla 11. Datos emisiones distintas a CO2 Hoja 3 GACMO. Fuente: Herramienta GACMO, 2023

En caso de que un sector o subsector no sea relevante para el contexto nacional, no se deben insertar datos en la celda correspondiente. Además, si el usuario desea ignorar sectores o subsectores específicos, no se deben insertar datos en las celdas correspondientes. Por ejemplo, si un usuario desea incluir solo las emisiones del sector de residuos, los datos solo se insertarán en D51/D52. Si un usuario quiere estimar sólo las emisiones de CO₂ procedentes de la quema de combustible, esta segunda tabla debe dejarse vacía.

Por lo tanto, es importante señalar que el usuario debe incluir datos solo para los sectores o subsectores relevantes para el contexto nacional y/o solo para los sectores o subsectores que el usuario desea cubrir en el análisis de la herramienta GACMO.

Una vez que se hayan insertado todos los datos en las tablas anteriores, puede pasar al siguiente paso haciendo clic en "Ir al paso 4".

4.1.d PASO 4: HOJA DE CRECIMIENTO

Esta hoja de cálculo incluye el crecimiento esperado del consumo energético de los distintos sectores de actividad para distintos periodos de tiempo. Las tasas de crecimiento deben suponer la ausencia de opciones de mitigación, ya que esas tasas de crecimiento se utilizan para estimar el escenario BAU. Esta hoja deberá ser complementada por el usuario.

El usuario debe completar la tabla denominada:

Crecimiento desde el año de inicio - País X

Los datos deben insertarse para diferentes períodos de tiempo desde el año de inicio hasta 2025, 2025-2030, 2030-2035 y 2035-2050. Los datos a insertar son:

- Crecimiento demográfico = Factor de crecimiento anual (%) de la población (D16-F16)
- Crecimiento del PIB = Factor de crecimiento anual (%) del PIB (D16-F16)
- Crecimiento del consumo de energía = Factor de crecimiento anual para cada categoría de actividad (D19-F38). En caso de que una categoría de actividad no sea relevante para el contexto nacional, no se deben insertar datos en la celda correspondiente.

Los datos de crecimiento porcentual anual del consumo de energía deben insertarse en la tabla. La herramienta GACMO utilizará estos factores de crecimiento para proyectar los datos de energía y GEI desde el año inicial hacia años futuros (2025, 2030, 2035 y 2050) en el escenario BAU. Los datos de crecimiento de población y PIB no se utilizan en las proyecciones en sí y la herramienta solo los utiliza para expresar las emisiones de GEI resultantes calculadas como datos de intensidad en tCO₂e per cápita o tCO₂e por PIB.

Después de que el usuario haga clic en "Ir al paso 5", las hojas con los pasos 1 a 4 se ocultarán.

El usuario puede mostrar los pasos 1-4 haciendo clic en "Volver al paso 1-4".

Una vez que se hayan insertado todos los datos en las tablas anteriores, el usuario puede pasar al siguiente paso haciendo clic en "Ir al paso 5".

4.1.e PASO 5: HOIA DE BALANCES DE ENERGÍA PROYECTADA BAU

Esta hoja de cálculo incluye las tablas de los balances energéticos futuros para los años 2025, 2030, 2035 y 2050 en el escenario BAU. Los datos de esta hoja son calculados automáticamente por la herramienta GACMO. El usuario puede navegar entre las tablas de los diferentes años haciendo clic en el Año que desea visualizar.

En esta hoja están disponibles dos tablas:

- El balance de combustibles fósiles año País X
- El balance de electricidad año.

La primera tabla Balance de combustibles fósiles - año - País X se puede mostrar con los datos en TJ o en unidades ktoe. El usuario puede navegar entre los dos tipos de unidades haciendo clic en la Unidad que desea mostrar.

En principio, el usuario no debe modificar ninguno de los datos ni en la tabla Balance de combustibles fósiles - año - País X, ni en la tabla Balance eléctrico - año. Excepcionalmente, un usuario podrá decidir modificar algún dato concreto de alguna de estas tablas en el caso de que quiera reflejar un cambio en el balance energético que no sea tenido en cuenta en las proyecciones realizadas por la herramienta GACMO. El usuario sólo debe realizar dicho cambio si está completamente familiarizado con ese tipo de datos ya que el cambio tendrá un impacto en los escenarios de emisiones y resultados obtenidos.

Una vez revisados los datos de las tablas, el usuario puede pasar al siguiente paso haciendo clic en "Ir al Paso 6".

4.1.f PASO 6: BALANCE DE GEI PROYECTADO EN BAU

Esta hoja de cálculo incluye las tablas de emisiones de GEI en el escenario BAU para los años 2025, 2030, 2035 y 2050. Los datos de esta hoja se calculan automáticamente mediante la herramienta GACMO. El usuario puede navegar entre las tablas de los diferentes años haciendo clic en el Año que desea visualizar. Con base en las proyecciones hacia los años 2025, 2030, 2035 y 2050, la herramienta GACMO dibujará una curva en un gráfico hecho de los años (como eje X) y las emisiones (como eje Y) conectando los puntos. Esta curva es el escenario BAU.

A continuación, se muestran las fórmulas detrás de los cálculos de las emisiones de GEI en el escenario BAU para los años futuros.

$$EMI_{Escenario\ BAU} = \sum EMI_{CO2\ derivados\ de\ la\ quema\ de\ combustible} + \sum EMI_{emisiones\ distintas\ de\ CO2}$$

 $EMI_{CO2\ derivados\ de\ la\ quema\ de\ combustble} = \sum Consumo\ de\ energia\ para\ el\ escenario\ BAU_{sector\ combustible} \times FE_{seector\ combustible}$

Consumo de energia en el escenario $BAU_{sector\ combustible}$

 $= consumo de energia_{sector\ combustible, a\~no\ de\ inicio} \times Tasa\ de\ crecimiento_{sector\ combustible}$

$$EMI_{emisiones\ distintas\ CO2} = \sum EMI_{a\~no\ de\ inicio} imes Taza\ de\ crecimiento_{sector}$$

En esta hoja hay dos tablas disponibles: las emisiones de CO₂ procedentes de la quema de combustibles – año – País X y los balances de las emisiones distintas de CO₂ procedentes de la quema de combustibles y de los sectores no quemados de combustibles.

En principio, el usuario no debe modificar ninguno de los datos ni en la tabla Emisiones de CO₂ por quema de combustible – año – País X, ni en la tabla Emisiones distintas de CO₂ por quema de combustible, sectores sin quema de combustible. En casos excepcionales, un usuario puede optar por modificar un punto de datos específico en una de estas tablas si desea reflejar un cambio en las emisiones de GEI que no se tiene en cuenta en las proyecciones realizadas por la herramienta GACMO. El usuario sólo debe realizar dicho cambio si está completamente familiarizado con ese tipo de datos ya que el cambio tendrá un impacto en los escenarios de emisiones y resultados obtenidos.

Una vez revisados los datos de las tablas, el usuario puede pasar al siguiente paso haciendo clic en "Ir al Paso 7" el cual muestra resultados de la proyección en la herramienta.

4.1.g PASO 7: OPCIONES DE MITIGACION

Esta hoja de cálculo incluye los datos relativos a las opciones de mitigación que el usuario incluirá en el escenario con medidas. Esta hoja deberá ser complementada por el usuario.

El escenario se establece estimando los potenciales de reducción de emisiones (en comparación con el BAU) en los años 2025, 2030, 2035 y 2050 utilizando diferentes opciones de mitigación seleccionadas por el usuario que dependen del contexto nacional. Con base en los potenciales de reducción de emisiones estimados en los años 2025, 2030, 2035 y 2050, la herramienta GACMO dibujará una curva en un gráfico hecho de los años (como eje X) y las emisiones (como eje Y) conectando los puntos.

A continuación, se muestran las fórmulas detrás de los cálculos de emisiones de GEI en el escenario de mitigación.

 $EMI_{escenario\ de\ mitigacion} = EMI_{escenario\ BAU} - Reduccion\ total\ de\ emision_{seleccionar\ opciones\ de\ mitigacion}$ $Reduccion\ total\ de\ emision_{seleccionar\ opciones\ de\ mitigacion} = \sum Reducciones\ de\ emision_{opciones\ de\ mitigacion}$

 $Reducciones\ de\ emision_{opciones\ de\ mitigacion} = EMI_{opciones\ de\ referencia} - EMI_{opcion\ de\ reduccion}$

Para estimar los potenciales de reducción de emisiones en los años 2025, 2030, 2035 y 2050 el usuario deberá llenar las tablas respectivas para esos años. El usuario puede navegar entre las tablas de los diferentes años haciendo clic en el Año que desea visualizar. Cabe señalar que, dependiendo de si un usuario desea estimar los potenciales de reducción de emisiones para todos los años o solo para 2025 y/o 2030 y/o 2035, y/o 2050, el usuario deberá completar una o varias de estas tablas. Si el usuario completa solo una tabla, entonces se estimará la reducción de emisiones para el año elegido. Significa que la herramienta GACMO no podrá trazar una curva (según el escenario) sino que la reducción de emisiones estará representada por un punto para este año en el gráfico.

La tabla completa que nos presenta la herramienta GACMO en relación a las opciones de mitigación se detalla en el anexo 1. Esta tabla incluye una lista de todas las opciones de mitigación incluidas en la herramienta GACMO, agrupadas por tipo de actividades. Estas opciones se pueden seleccionar de acuerdo a la relación con las políticas que se van a evaluar.

		×
Below you can select one or r	more sector(s) or type(s) of e	mission reduction options
Select all	Clear se	election
☐ Agriculture	✓ EE service	✓ Hydro
☐ Biomass energy	☐ EE supply side	☐ Landfills
□ ccs	☐ Energy distribution	☐ Marine
□ Cement	☐ Forestry	☐ Methane avoidance
☐ Coal bed/mine methane	☐ Fossil fuel switch	□ N2O
□ EE Households	☐ Fugitive	▼ Solar
☐ EE Industry	☐ Geothermal	✓ Transport
☐ EE own generation	☐ HFCs, PFCs, SF6	☑ Wind
Show selected se	ector/type	Cancel

Figura 1. Tipo de opciones de mitigación propuestos para las metas CND del sector Energía. Fuente: Herramienta GACMO, 2023

Cada opción se ha integrado en la herramienta introduciendo parámetros predeterminados relacionados con cada actividad. El usuario puede acceder a la tabla de cada opción de mitigación haciendo clic en el nombre de la opción de mitigación.

Las opciones de mitigación que más se relacionan con las políticas del sector energía en las cuales se encuentran las metas del sector se detallan se muestran en la figura 1 y se detallan a continuación en forma ordenada en función a la lista de opciones de mitigación de GACMO.

(1) Para la opción de Alumbrado LED

TIPO	OPCIONES DE MITIGACIÓN
EE service (servicio de energía eléctrica)	Efficient street lights (Alumbrado público eficiente)

Tabla 12. Opciones de mitigación Servicio de energía eléctrica. Fuente: Herramienta GACMO, 2023

Esta opción de mitigación se relaciona a la meta 8 del sector Energía de la CND, en la descripción de la meta se define lo siguiente: *Reemplazar 38.108 luminarias convencionales (sodio de 150W)* por LED (54W), sin embargo, para una actualización de la CND se recomienda el cálculo con el total de lámparas LED reemplazadas, para este ejemplo se considerarán datos promedio relacionados al total de luminarias tanto LED como convencionales sin importar el tipo ni tecnología.

Los datos requeridos se insertan dándole clic a la opción en la celda C50 y nos aparece una tabla

en donde se deben de introducir los valores en las celdas amarillas:

Opción de reducción: 100 W LED		
O&M	60.00	US\$/cambio de lampara
Actividad	267	lugares
Costo de lampara eficiente	180	US\$
Vida útil de lampara	50,000	hrs
Vida útil de lampara en años	17.1	años
Potencia lampara	100	W
Uso diario	8	hrs
Uso anual de electricidad	78	MWh
Opción de referencia: 250 W lampara de sodio		
O&M	20.00	US\$/cambio de lampara
Actividad	267	lugares
Costo de lampara de sodio	60	US\$
Vida útil de lampara en horas	24,000	hrs
Vida útil de lampara en años	8.2	Años
Remplazos de lampara requeridos	0.9	Veces
Tasa de descuento de lampara	0.3%	
Potencia lampara de sodio	250	W
Uso diario	8	hrs
Uso anual de electricidad	195	MWh

Tabla 13. Datos opción Alumbrado público eficiente. Fuente: Herramienta GACMO, 2023

Para la opción de reducción referente a luminarias LED y lámparas de sodio, se debe completar los datos con la información referente a los proyectos de adquisición y cambio de luminarias ejecutados hasta la gestión correspondiente y la información de adquisición de lámparas convencionales.

(2) Para la opción de energía generada por hidroeléctricas

TIPO	OPCIONES DE MITIGACIÓN
Hydro (hídrico)	Hydro power connected to main grid (Energía hidroeléctrica conectada a la red principal)
Tabla 14. Opciones de mitigación Hídrico. Fuente: Herramienta GACMO, 2023	

Esta opción de mitigación se relaciona con la meta 3, haciendo referencia a la producción de energía eléctrica basadas en energías renovables, la definición de renovable engloba centrales hidroeléctricas, eólicas, solares y biomasa, por lo que esta opción muestra solo una parte de la reducción de emisiones de GEI global de la meta.

Los datos requeridos se insertan dándole clic a la opción en la celda C84 y nos aparece una tabla en donde se deben de introducir los valores en las celdas amarillas:

Opción de reducción: Energía hidroeléctrica		
O&M	0.5%	
Actividad	1	MW
Inversión en la actividad	1138.1	US\$/kW

Factor de capacidad	3961	Horas a tiempo completo
Producción de electricidad	3961	MWh/ año
Costo de electricidad producida	0.0381	US\$/kWh

Tabla 15. Datos opción Energía hidroeléctrica conectada a la red principal. Fuente: Herramienta GACMO, 2023

Los datos de la actividad e inversión corresponden a los valores relacionados a la capacidad instalada y los montos ejecutados para la implementación de los proyectos de centrales hidroeléctricas para la gestión de partida.

(3) Para la opción de energía solar

TIPO	OPCIONES DE REDUCCIÓN
Solar (solar)	Solar PVs, large grid (Energía solar fotovoltaica, red amplia)
Solai (Solai)	Solar house PVs (Sistemas fotovoltaicos domésticos)

Tabla 16. Opciones de mitigación Solar. Fuente: Herramienta GACMO, 2023

La opción de Energía solar fotovoltaica en red amplia, se la considera para las metas 3 y 4, las mismas se relacionan con la generación de energía eléctrica por fuentes renovables y alternativas, la definición de renovable engloba centrales hidroeléctricas, eólicas, solares y biomasa y la definición de alternativa engloba centrales eólicas, solares y biomasa, descartando a las centrales hidroeléctricas para la meta 4.

Los datos requeridos se insertan dándole clic a la opción en la celda C105 y nos aparece las siguientes tablas en donde se deben de introducir los valores en las celdas amarillas:

Actividad: Solar PV		
Tamaño del sistema PV	1.0	MW
Inversión en actividad	1000	US\$/kW
Insolación diaria	5	hrs
Factor de capacidad anual	1825	Horas a tiempo completo
Factor de eficiencia	1	
O&M	1.0%	Sobre inversión
Producción de electricidad	1825	MWh
Costo de electricidad producida	0.079	US\$/kWh

Tabla 17. Datos opción Energía solar fotovoltaica, red amplia. Fuente: Herramienta GACMO, 2023

Los datos a complementar deben estar relacionados a los montos de inversión ejecutados para los sistemas fotovoltaicos de la gestión de partida y los datos técnicos de los mismos.

La opción de mitigación de Sistema fotovoltaicos domésticos, es la que más se relaciona para la meta 2, que contempla la generación de energía eléctrica por parte de usuarios, la generación por lo general se basa en sistemas fotovoltaicos de baja y media potencia.

Los datos requeridos se insertan dándole clic a la opción en la celda C107 y nos aparece las siguientes tablas en donde se deben de introducir los valores en las celdas amarillas:

Actividad: Solar PV		
Tamaño del sistema PV	0.5	kW
Area del Sistema PV	3.7	m2

Inversión en actividad	1500	US\$/kW
Insolación diaria	5	hrs
Factor de capacidad anual	1825	Horas a tiempo completo
Factor de eficiencia	0.9	
O&M	1.0%	Sobre inversión
Producción de electricidad	0.821	MWh
Costo de electricidad producida	0.131	US\$/kWh

Tabla 18. Datos opción Sistemas fotovoltaicos domésticos. Fuente: Herramienta GACMO, 2023

Los datos a complementar deben estar relacionados a los montos de inversión que se usaron para la implementación de los sistemas fotovoltaicos de baja o media potencia de la gestión de partida y los datos técnicos de los mismos.

(4) Para la opción de transporte

TIPO	OPCIONES DE REDUCCIÓN
Transport	Electric cars (Carros eléctricos)
(transporte)	Electric cars (Carros electricos)

Tabla 19. Opciones de mitigación Transporte. Fuente: Herramienta GACMO, 2023

La opción de mitigación de carros eléctricos se considera para la evaluación de la meta 9, considerando también los datos referentes a carros híbridos (Diesel- eléctrico o Gasolina-eléctrico).

Los datos requeridos se insertan dándole clic a la opción en la celda C121 y nos aparece una tabla en donde se deben de introducir los valores en las celdas amarillas:

Opción de reducción: Autos eléctricos		
Inversión en vehículo	25,000	US\$
Inversión en estación de carga	1,000	US\$
Tamaño de batería	17	kWh
Inversión en batería	60	US\$/kWh
O&M anual	0.5%	Sobre inversión
Consumo eléctrico	9.0	km/kWh
Consumo eléctrico total	1,326	MWh
Precio de referencia Electricidad	85.00	US\$/kWh
CO2-eq. Coeficiente de emisión	0.46	tCO2/MWh
Emisiones por electricidad	610	tCO2
Eficiencia económica	9.73	US\$/km
Opción de referencia: Autos normales a ga	solina	
Consumo energético	16.0	km/l
Inversión en vehículo	30,000	US\$
O&M anual	1.0%	Sobre inversión
Precio de la gasolina	0.44	US\$/litro
Consumo total de gasolina	0.75	Millones de litros

1000 l gasolina =	33.6	GJ
CO2-eq. Coeficiente de emisión	69.3	kgCO2-eq./GJ
Emisiones de gasolina	1,746	tCO2
Eficiencia económica	0.42	US\$/km

Tabla 20. Datos opción Carros eléctricos. Fuente: Herramienta GACMO, 2023

Los datos a complementar pueden encontrarse en los detalles económicos de vehículos eléctricos y a gasolina además de sus características técnicas de las distribuidoras automotrices en Bolivia, así mismo, los datos de precios sobre combustibles se obtienen de las publicaciones de la ANH.

(5) Para la opción de energías eólicas

TIPO	OPCIONES DE REDUCCIÓN
Wind (Eólico)	Wind turbines, on-shore (Aerogeneradores terrestres)

Tabla 21. Opciones de mitigación Eólico. Fuente: Herramienta GACMO, 2023

Esta opción de mitigación se relaciona con las metas 3 y 4, complementa los datos totales sobre la generación y potencia instalada para ambas metas para la generación de energía de fuentes renovables y alternativas.

Los datos requeridos se insertan dándole clic a la opción en la celda C134 y nos aparece una tabla en donde se deben de introducir los valores en las celdas amarillas:

Opción de reducción: Energía eólica		
O&M	1.50%	
Actividad	1	MW
Inversión en actividad	675	US\$/kW
Factor de capacidad	2500	Horas a tiempo completo
Producción de electricidad	2500	MWh/ año
Costo de electricidad producida	0.040	US\$/kWh

Tabla 22. Datos opción Aerogeneradores terrestres. Fuente: Herramienta GACMO, 2023

Los datos a complementar deben estar relacionados a los montos de inversión ejecutados para los sistemas eólicos de la gestión de partida y los datos técnicos de los mismos.

5 FORMULACION DE ESCENARIOS

5.1 ESCENARIO SIN MEDIDAS

Se analiza el escenario sin medidas (BAU) a partir de los datos relacionados al consumo de combustibles fósiles presentados en el BEN para el año 2020.

División por sector escenario de emisiones BAU									
ktCO2e/año	2020	2025	2030	2035	2040	2045	2050		
Total	15,220	17,442	19,980	22,793	26,031	29,766	34,071		
Energía	2,689	2,913	3,210	3,540	3,908	4,319	4,778		
Industria	1,779	1,977	2,204	2,462	2,758	3,100	3,501		
Transporte	8,478	9,828	11,393	13,208	15,312	17,751	20,578		
Hogares	1,597	2,036	2,476	2,874	3,332	3,862	4,466		
Servicios	126	136	147	158	170	183	197		
Agricultura y pesca	551	551	551	551	551	551	551		
Forestal	0	0	0	0	0	0	0		
Residuos	0	0	0	0	0	0	0		

Tabla 23. Datos por sector escenario de emisiones WOM. Fuente: Elaboración Propia a partir de GACMO, 2024

Para el escenario sin medidas se consideraron los datos de consumo de combustibles fósiles de acuerdo a la matriz de BEN por tipo de combustible, no se consideraron otros gases GEI debido a la información para la gestión 2020, así mismo, solo se consideró el sector Energía.

La herramienta GACMO realiza la modelación para el escenario BAU y sus proyecciones para los años de análisis, se genera el siguiente cuadro de datos:

Emisión de GEI de todos los sectores	2020	2025	2030	2035	2040	2045	2050
Población (Miles)	11,677	12,499	13,346	14,215	15,104	16,008	16,925
PIB (MUS\$)	40	80	161	323	650	1,307	2,629
BAU emission CO2 de energeia (ktCO2)	15,220	17,442	19,980	22,793	26,031	29,766	34,071
BAU emisión otros gases GEI (ktCO2e)	-	-	-	-	-	-	-
BAU Emisión GEI (ktCO2e)	15,220	17, 44 2	19,980	22,793	26,031	29,766	34,071

Tabla 24. Datos obtenidos de proyección de emisiones GEI escenario WOM. Fuente: Elaboración Propia a partir de GACMO, 2024

5.2 ESCENARIO CON MEDIDAS

Se analiza el escenario con medidas WEM, a partir de las metas del sector Energía de la CND de Bolivia que corresponden al documento presentado para 2021-2030.

META	DESCRIPCION	LÍNEA BASE (2020)	META (2030)	OPCION DE MITIGACION
1	Al 2030, se logrará el Acceso Universal a cobertura eléctrica al 100%	Urbano: 99,1 % Rural: 80%	Urbano: 100% Rural: 100%	No hay opción relacionada
2	Al 2030, se prevé que los usuarios lleguen a producir un aproximado de 76,9 GWh como energía eléctrica demandada a nivel nacional (37MW de potencia instalada)	Energía: 0 MWh Potencia: 0 MW	Energía: 76,9 GWh Potencia: 37MW	Sistemas PV domésticos
3	Al 2030, se ha logrado que el 79% de la energía consumida provenga de centrales basadas en energías renovables (50% de la potencia instalada)	Energía: 37% Potencia: 27%	Energía: 79% Potencia: 50%	Opción: Red amplia, sistemas eólicos on- shore, Hidroeléctricas conectadas a la red principal
4	Al 2030, se ha logrado que el 19% de la energía consumida provenga de centrales basadas en energías alternativas (13,25% de la potencia instalada)	Energía: 5% Potencia: 6%	Energía: 19% Potencia: 13,25%	Opción: Red amplia, sistemas eólicos on- shore
5	Al 2030, se ha logrado la potencia instalada del sistema eléctrico interconectado alcanza 5.028 MW	3.177 MW	5.028 MW	No hay opción relacionada
6	Al 2030, se ha logrado la interconexión de 5 Sistemas Aislados al SIN	0 interconexiones	5 interconexiones	No hay opción relacionada
7	Al 2030, se ha logrado que 8 Sistemas Aislados sean híbridos, incluyendo a su matriz de generación fuentes renovables	3 SA Híbridos	8 SA Híbridos	No se plantea ninguna opción por el tipo de meta
8	Al 2030, se ha logrado el reemplazo de 6% del inventario nacional de alumbrado público por tecnología LED	Menos del 1%	6% del inventario nacional	Opción: Alumbrado público eficiente

9	Al 2030 se ha logrado un crecimiento anual del 10% de participación de vehículos eléctricos en el parque automotor del transporte público en Bolivia	Menos del 1%	10% son Vehículos eléctricos	Opción: Carros eléctricos
10	Al 2030 se han implementado 3 proyectos piloto de tecnologías de almacenamiento y gestión de energía eléctrica	0 proyectos	3 proyectos	No hay opción relacionada

Tabla 25. Datos de proyección sobre línea base y meta 2030 CND sector Energía, Fuente: Elaboración Propia en base a la CND, 2024

Se realizo un análisis de linealización con respecto a los datos de línea base y el valor de la meta 2030 para definir los valores de proyección para 2035, 2040, 2045 y 2050. Con los valores ajustados para cada opción de mitigación en la herramienta GACMO se obtiene los nuevos valores con la reducción de emisiones, los cuales se resaltan en color verde.

División por sector escenario de emisiones con mitigación										
ktCO2e/año	2020	2025	2030	2035	2040	2045	2050			
Total	15,220	16,444	18,531	21,218	24,331	27,939	32,115			
Energía	2,689	1,921	1,770	1,978	2,223	2,510	2,843			
Industria	1,779	1,977	2,204	2,462	2,758	3,100	3,501			
Transporte	8,478	9,825	11,387	13,199	15,302	17,739	20,564			
Hogares	1,597	2,036	2,476	2,874	3,332	3,862	4,466			
Servicios	126	134	144	154	165	177	190			
Agricultura y pesca	551	551	551	551	551	551	551			
Forestal	0	0	0	0	0	0	0			
Residuos	0	0	0	0	0	0	0			

Tabla 26. Datos por sector escenario de emisiones WEM. Fuente: Elaboración Propia a partir de GACMO, 2024

En la tabla anterior se realizaron los cálculos de la proyección en base a los siguientes supuestos:

- a) Se cumplen las metas del sector Energía para el 2030, sobre todo en la generación de energía eléctrica con sistemas de energía renovable y alternativa, Meta 3, 4 y 5.
- b) Se mantiene la capacidad instalada en MW de las centrales termoeléctricas, es decir que no se construyen más centrales de este tipo a futuro.
- c) Se mantiene una tendencia lineal relacionada a la implementación de Sistemas de generación de energía eléctrica por sistemas de energía renovable y alternativa hasta el año 2030, posterior a este periodo se considera un crecimiento de 3% por año en la ampliación de la generación eléctrica.

La herramienta realiza los cálculos correspondientes para la proyección con las medidas de mitigación ajustadas según las opciones que presenta GACMO, los datos generales se muestran a continuación:

Emisión de GEI de todos los sectores	2020	2025	2030	2035	2040	2045	2050
BAU Emisión GEI (ktCO2e)	15,220	17,442	19,980	22,793	26,031	29,766	34,071
Reducción de emisiones en Escenario con Medidas							
(ktCO2e)	-	997	1,449	1,575	1,699	1,827	1,956
Emisiones totales escenario							
con medidas (ktCO2e)	15,220	16,444	18,531	21,218	24,331	27,939	32,115
Reducción en Escenario con							
Medidas (%)	0.0%	5.7%	7.3%	6.9%	6.5%	6.1%	5.7%

Tabla 27. Datos obtenidos de proyección de emisiones GEI escenario WEM. Fuente: Elaboración Propia a partir de GACMO, 2024

La comparación de los sectores involucrados con la aplicación de las medidas de mitigación se diferencia en base a los valores de emisiones antes y después de la aplicación de dichas medidas contempladas de acuerdo a la tabla 25, los datos se presentan en la siguiente tabla:

Comparación por sector emisiones en escenario WOM y WEM							
ktCO2e/año	2020	2025	2030	2035	2040	2045	2050
Energía BAU	2,689	2,913	3,210	3,540	3,908	4,319	4,778
Con medidas	2,689	1,921	1,770	1,978	2,223	2,510	2,843
Transporte BAU	8,478	9,828	11,393	13,208	15,312	17,751	20,578
Con medidas	8,478	9,825	11,387	13,199	15,302	17,739	20,564
Servicios BAU	126	136	147	158	170	183	197
Con medidas	126	134	144	154	165	177	190

Tabla 28. Datos comparación por sector con reducciones de emisión. Fuente: Elaboración Propia a partir de GACMO, 2024

5.3 ESCENARIO CON MEDIDAS ADICIONALES

Para el escenario con medidas adicionales se consideran planes y programas que no forman parte de las metas del sector Energía de la CND, para lo cual se plantean los siguientes supuestos:

- Se consideran proyectos por ejecutar que no se relacionan aun con las metas del sector Energía de la CND, caso "Programa de Energía Solar y Movilidad Eléctrica Sostenible para Mi Teleférico BO-L1229".
- Se consideran proyectos de generación de energía geotérmica, caso "Proyecto Geotérmico Laguna Colorada con una potencia proyectada de 100 MW"
- Se hace una consideración que a partir del año 2030 se pueda incrementar un porcentaje adicional en base al porcentaje del escenario con medidas (Emisiones totales escenario con medidas adicionales = Emisiones totales escenario con medidas* % reducción con medidas), adicionar por año: 2030 = 7.3%, 2035 = 6.9%, 2040 = 6.5%, 2045 = 6.1% y 2050 = 5.7%.

A partir de los supuestos anteriores se adiciona la reducción de emisiones para los escenarios con medidas adicionales en la siguiente tabla.

Emisión de GEI de todos los sectores	2020	2025	2030	2035	2040	2045	2050
BAU Emisión GEI (ktCO2e)	15,220	17, 44 2	19,980	22,793	26,031	29,766	34,071
Reducción de emisiones en Escenario con Medidas							
(ktCO2e)	-	2,701	3,913	5,116	6,322	7,530	8,737
Emisiones totales escenario con							
medidas (ktCO2e)	15,220	14,741	16,067	17,676	19,708	22,237	25,333
Reducción en Escenario con							
Medidas (%)	0.0%	15.5%	19.6%	22.4%	24.3%	25.3%	25.6%
Reducción de emisiones en							
Escenario con Medidas							
adicionales (ktCO2e)		2,701	4680	6265	7858	9434	10978
Emisiones totales escenario con							
medidas adicionales (ktCO2e)	15,220	14,741	15,300	16,528	18,173	20,332	23,093
Reducción en Escenario con							
Medidas adicionales (%)	0.0%	15.5%	23.4%	27.5%	30.2%	31.7%	32.2%

Tabla 29. Datos obtenidos de proyección de emisiones GEI escenario WAM. Fuente: Elaboración Propia a partir de GACMO, 2024

Los resultados proyectados se muestran a continuación en una gráfica que reúne a los 3 escenarios propuestos para proyecciones de GEI del sector Energía.

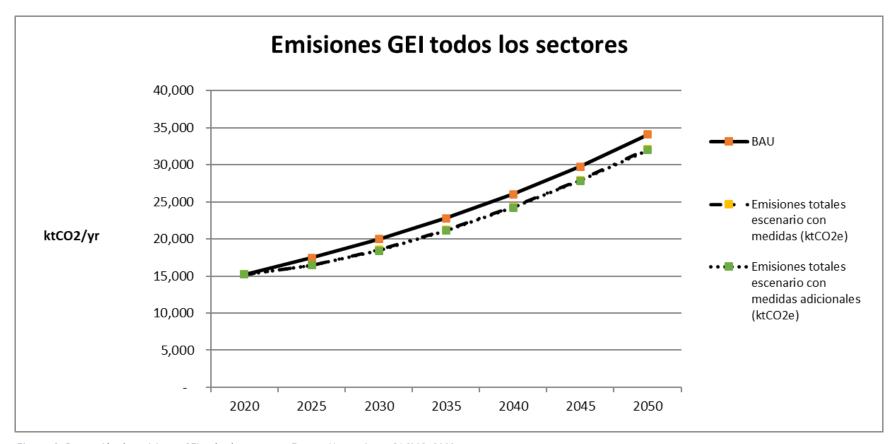


Figura 2. Proyección de emisiones GEI todos los sectores. Fuente: Herramienta GACMO, 2023

6 ARTICULACION A POLITICAS DEL SECTOR ENERGIA

Bajo el MTR se deben considerar los siguientes puntos para la comunicación de proyecciones en los reportes correspondientes:

MPD	TIPO	REQUISITOS
92	Debe/Alentar	Comunicar proyecciones con flexibilidad para países en desarrollo
93	Debe	Indicación del efecto de las P y M, no para evaluar progresos, a menos que sea indicado
94	Debe/Puede	Con medidas (WEM) es obligatoria, las otras dos son opcionales
95	Debe	La proyección inicia en el año más reciente del inventario + 15 años
96	Debería	Descripción metodológica: Modelos, enfoques, supuestos
97	Debe	Proyecciones de indicadores principales para determinar los progresos realizados
98	Debe	Proyecciones por sector, gas y total, usando métricas consistentes con el inventario
99	Debe	Poner en relación con los datos de inventario reales de los años precedentes
100	Debe	Presentar proyecciones con y sin el sector UTS
101	Debe	Formato gráfico y tabular

Tabla 30. Requisitos sobre proyecciones en el MTR, Fuente: Elaboración Propia en base a las MPD, 2024

De acuerdo a la tabla anterior se observa que las metas actuales del sector Energía tienen cierta complicación para su proyección en base a los datos que se informan regularmente al MHE y las características para el desarrollo con respecto a una herramienta en específico para abarcar todas las metas, por lo cual, se partirá sobre las metas que puedan ajustarse a la evaluación y proyección en la herramienta GACMO.

Actualmente se consideran las siguientes políticas que están relacionadas a las metas del sector Energía de la CND, las mismas se detallan en la línea de proyectos con los cuales están relacionados con las opciones de mitigación de la herramienta GACMO.

META	OPCION DE MITIGACION	UNIDAD A CONSIDERAR	POLITICAS A EVALUAR
Meta 1: Al 2030, se logrará el Acceso Universal al servicio de electricidad al	No hay opción relacionada	Sin datos	Programa Electricidad para Vivir con Dignidad 2006 - 2025
100%.			Programa de Electrificación Rural II (BO-L117)
Meta 2: Al 2030, se prevé que los usuarios lleguen a producir un aproximado de 76.9 GWh como	Tipo: Solar Opción: Sistemas PV domésticos	500 W	DS 4477 Generación Distribuida en los sistemas de distribución de energía eléctrica

DOLIVINI _			
energía eléctrica demandada a nivel nacional (37MW de potencia instalada). Meta 3: Al 2030, se ha			
logrado que el 79% de la energía consumida provenga de centrales basadas en energías renovables (50% de la potencia instalada).	Tipo: Solar, Eólica, Hídrica Opción: Red amplia, sistemas eólicos on-shore, Hidroeléctricas conectadas a la red principal	1 MW	Programa Electricidad para Vivir con Dignidad 2006 – 2025 Programa de Energías Renovables KfW
Meta 4: Al 2030, se ha logrado que el 19% de la energía consumida provenga de centrales basadas en energías alternativas (13,25 % de la potencia instalada).	Tipo: Solar, Eólica Opción: Red amplia, sistemas eólicos on-shore	1 MW	Programa Electricidad para Vivir con Dignidad 2006 – 2025 Programa de Energías Renovables KfW
Meta 5: Al 2030, se ha logrado la potencia instalada del sistema eléctrico interconectado alcanza 5.028 MW.	No hay opción relacionada	Sin datos	Programa Electricidad para Vivir con Dignidad 2006 – 2025
Meta 6: Al 2030, se ha logrado la interconexión de 5 Sistemas Aislados al SIN.	No hay opción relacionada	Sin datos	Programa Electricidad para Vivir con Dignidad 2006 – 2025 Programa de Electrificación Rural II (BO-L117)
Meta 7: Al 2030, se ha logrado que 8 Sistemas Aislados sean híbridos, incluyendo a su matriz de generación fuentes renovables.	Considerar Tipo: Solar Opción: Sistemas Solar/Diesel	40 kW producidos por energía solar	Programa Electricidad para Vivir con Dignidad 2006 – 2025 Programa de Electrificación Rural II (BO-L117)
Meta 8: Al 2030, se ha logrado el reemplazo de 6% del inventario nacional de alumbrado público por tecnología LED.	Tipo: Eficiencia Energética en Servicios Opción: Alumbrado público eficiente	1000 lámparas	Programa Nacional de Eficiencia Energética 2008 Estrategia Nacional de Eficiencia Energética 2022- 2025 Programa Realizando la transición hacia la Iluminación Eficiente

Meta 9: Al 2030 se ha logrado un crecimiento anual del 10% de participación de vehículos eléctricos en el parque automotor del transporte público en Bolivia.	Tipo: Transporte Opción: Carros eléctricos	1000 autos	Programa Nacional de Eficiencia Energética 2008 Estrategia Nacional de Eficiencia Energética 2022- 2025 Se impulso programas de EE en Electromovilidad
Meta 10: Al 2030 se han implementado 3 proyectos piloto de tecnologías de almacenamiento y gestión de energía eléctrica.	No hay opción relacionada	Sin datos	Sin datos

Tabla 31. Comparación opciones de mitigación de la herramienta GACMO y metas del sector Energía CND. Fuente: Elaboración Propia, 2024

Las metas 2, 3, 4, 8 y 9 pueden ser relacionadas a una opción de mitigación en la herramienta GACMO, se cuenta con datos que se pueden ajustar a las características de cálculo de dicha herramienta, la meta 7 actualmente considera la ejecución de proyectos y su conteo, para el uso de la opción de mitigación referente a plantas solares/diésel, se debe ajustar el indicador correspondiente para su evaluación posterior.

En la tabla anterior se presentan las políticas en función a programas y planes implementados a nivel nacional, con los cuales se deben ajustar los datos para la ejecución de las opciones de mitigación seleccionadas por meta del sector Energía en la CND en la herramienta GACMO y así realizar su evaluación y seguimiento correspondiente.

7 CONCLUSIONES

- En el capítulo 4 se desarrolló la guía metodológica para el uso de la herramienta GACMO, para la cual se establecen los 7 pasos referentes a la introducción y análisis de datos y los pasos siguientes muestran los resultados correspondientes de acuerdo a los datos introducidos a la herramienta que se muestran en el desarrollo del capítulo 5.
- En el capítulo 5 se plantea el desarrollo para el análisis de las proyecciones de emisiones GEI en 3 distintos escenarios: Escenario WOM, en función a los datos de consumo de combustibles fósiles por tipo de combustible y sector de acuerdo a la información presentada en el BEN a OLADE para el año 2020, escenario WEM, en función a las metas del sector Energía presentadas en la CND de Bolivia 2021-2030, escenario WAM, considerando supuestos para la proyección de medidas no consideradas en la CND y que plantean proyectos que puedan generar una reducción de emisiones adicionales.
- En el capítulo 6 se realizó el análisis para la articulación de las políticas de mitigación del sector energía para su seguimiento y evaluación con respecto a las características de cada política en la herramienta GACMO y su posterior seguimiento para la elaboración de las tablas CTF para los reportes IBT correspondientes. El análisis de las políticas actuales se la considerará en productos posteriores.
- Las políticas actuales se enmarcan en los programas y planes citados en la tabla 31, para lo cual se debe realizar el análisis correspondiente para identificar la línea de datos que puedan complementar los datos para el análisis de las opciones de mitigación de la herramienta GACMO.
- Las acciones de mitigación correspondientes a las metas del sector Energía de la CND, se reflejan a través de las opciones de mitigación adoptadas en la herramienta GACMO, los impactos correspondientes a su implementación y proyección hasta el 2050 se observan en los puntos 5.2 y 5.3 con el análisis de los escenarios con medidas WEM y con medidas adicionales WAM.
- Debido a que el MHE antiguamente se capacitó en la herramienta LEAP, se presenta una guía metodológica sobre el uso de la herramienta en el anexo 4.
- Se propone el uso de la herramienta GACMO como punto de partida y marco de referencia hasta el proceso de capacitación de la herramienta LEAP, se recomienda que se establezcan las capacitaciones en el periodo de transición correspondiente a la implementación del MRV del sector Energía.
- Se recomienda realizar la actualización de los factores de emisión correspondientes a energías renovables, para el margen de energía solar y eólica y el margen combinado, así mismo, actualizar los valores de crecimiento por sector si se realizan estudios al respecto.

8 BIBLIOGRAFÍA

- 1/CP.21, C. (2015). Decisiones adoptadas por la Conferencia de las Partes. Paris: CMNUCC.
- 10/CP.2, C. (1996). *Comunicaciones de las Partes no incluidas en el anexo I de la Convencion:*Directrices, facilitacion y procedimiento de examen. Ginebra: CMNUCC.
- 18/CMA.1, C. (2018). *Modalidades, procedimientos y directrices para el marco de transparencia para las medidas y el apoyo que se hace referencia en el articulo 13 del Acuerdo de Paris.* Katowice: CMNUCC.
- 5/CMA.3, C. (2021). *Orientaciones para la puesta en practica de las modalidades, los procedimientos y las directrices para el marco de transparencia reforzado para las medidas y el apoyo a que se hace referencia en el artículo 13 del Acuerdo de Paris.* Glasgow: CMNUCC.
- APMT, & MMAyA. (2022). *Contribución Nacionalmente Determinada (CND) del Estado Plurinacional de Bolivia. Actualización periodo 2021 2030 en el marco del Acuerdo de París.* La Paz: APMT.
- CMNUCC. (2020). *Manual técnico para las Partes que son países en desarrollo sobre la preparación para la aplicación del marco de transparencia reforzado según el Acuerdo de París.* Bonn: CMNUCC.
- Desgain, D., Kerimray, A., & Ipsen, J. (2023). *Guidance to the Greenhouse Gas Abatement Cost Model (GACMO).* Copenhagen: ICAT.
- GIZ. (2020). *Análisis del estado de situación de la implementación de la Contribución Nacionalmente Determinada (NDC)*. La Paz, Bolivia.: GIZ.
- Graichen, J., & Blank, D. (2018). *Contabilidad de las Contribuciones Nacionalmente Determinadas.*Bonn: GIZ.
- MHE. (2023). Balance Energético Nacional 2018-2022. La Paz, Bolivia: MHE.
- Ministerio de Hidrocarburos y Energia. (2024). Obtenido de https://www.mhe.gob.bo/vmeea/
- MMAyA, A., & HELVETAS. (2022). *Manual orientativo para el monitoreo y reporte de los indicadores climáticos de las metas de la NDC actualizada de Bolivia de los sectores energía, agua y agropecuario, bajo el marco de transparencia reforzada.* La Paz, Bolivia: MMAyA, APMT, HELVETAS.
- Rich, D., Bhatia, P., Finnegan, J., Levin, K., & Mitra, A. (s.f.). *GHG Protocol Policy and Action Standard.*WRI.
- UNFCCC. (2020). *El Acuerdo de París y las contribuciones determinadas a nivel nacional.* Bonn, Alemania: UNFCCC.
- Wartmann, S., Shaikh, S., Moosmann, L., Urrutia, C., Essus, C., Gomez-Villota, F., & Zarzo, O. (2023). *NDC Progress Indicators: a guidance for practitioners.* Bonn: GIZ.
- Wartmann, S., Sheldon, D., & Watterson, J. (2021). *Projections of Greenhouse Gas Emissions and Removals: An Introductory Guide for Practitioners.* Berlin: GIZ.
- WRI. (2016). *MRV 101: Understanding Measurement, Reporting, and Verification of Climate Change Mitigation.* Washington D.C., EEUU: WRI .

9 ANEXOS

9.1 ANEXO 1 OPCIONES DE MITIGACION HERRAMIENTA **GACMO**

TIPO	OPCION DE MITIGACION		
Agriculture	Rice crop CH4 reduction		
	Zero tillage		
	Cover crops		
	Nitrification inhibitors (1000 ha)		
	Covering slurry stores (1 slurry store)		
	Fat supplementation in ruminants diets (%DM fat added)		
	Tobacco curing		
Biomass energy	Rice husk cogeneration plants		
	Biomass power from biomass residues		
	Bagasse power		
CCS	CCS plant		
Cement	Clinker replacement		
Coal bed mine methane	Coal mine methane		
EE households	Efficient residential airconditioning		
	Efficient lighting with CFLs		
	Efficient lighting with LEDs		
	Efficient lighting with LEDs replacing CFL		
	Efficient wood stoves		
	Efficient charcoal stoves		
	LPG stoves replacing wood stoves		
	Efficient electric stoves		
	Induction based cooking		
	New passive home		
	Efficient refrigerators		
EE industry	Efficient electric motors		
	Energy efficiency in industry		
	Building materials		
EE own generation	Waste heat recovery at cement plant		
	Waste heat recovery at steel plant		
EE service	Efficient electric motors		
	Efficient office lighting with CFLs		
	Efficient office lighting with LEDs		
	Efficient street lights		
	Efficient water pumping		
	HVAC		
	Efficient Chiller > 300 TR		
	Efficient Chiller < 300 TR		
	Efficient room airconditioner		
	Efficient commercial dishwashing machine		

AIA MAIN		
	Efficient hotel refrigerator	
	Efficient hotel washing machine	
	Energy efficiency in service	
	New office building with central cooling	
EE supply side	New natural gas power plant	
	Switch from fuel oil to natural gas	
	Cogeneration in industry	
	Single cycle to combined cycle	
Energy distribution	Efficient electric grids	
	Connection of isolated grid to central grid	
	Power factor increase	
	District heating network rehabilitation (100,000 flats supplied)	
	District cooling network (1 million m2 new city area covered)	
Forestry	Reforestation	
,	REDD: Avoided deforestation	
	Assisted forest regeneration	
	Reforestation with agroforestry	
	Reforestation with Silvopasture	
Fossil fuel switch	Switch from coal to natural gas in industry	
1 OSSII Taci SWILCII	Switch from fuel oil to natural gas in industry	
Fugitive	Reduced flaring at oil field	
1 agiate	Reduced flaring at oil refineries	
	Leak reduction in natural gas pipelines	
	Charcoal production	
Geothermal	Geothermal power	
Geodifermal	Geothermal heat	
HFCs, PFCs, SF6	Reduced PFCs from aluminum production	
Hydro	Hydro power connected to main grid	
,	Mini hydro power connected to main grid	
	Mini hydro power off grid	
Landfills	Landfill gas plant with power production	
	Landfill gas flaring	
	Incineration plant	
	Recycling of plastics	
	Refuce Derived Fuel (RDF) from MSW	
	Biogas from Municipal Solid Waste	
	Composting of Municipal Solid Waste	
Marine	Tidal	
Warne	Wave	
Methane avoidance	Biogas at rural farms using kerosene	
Wediane avoidance	Biogas at rural farms using kerosene Biogas at rural farms using non-renewable fuelwood	
	Biogas at big farms	
	Biogas from industrial waste water	
N2O		
N2O	Nitric acid plant (N2O destruction)	
Solar	PV pump replacing electric pump	
	PV pump replacing diesel pump	
	Solar water heater, residential	

	Solar water heater, large
	Solar PVs, large grid
	Solar PVs, large grid with 24h storage
	Solar house PVs
	Solar cottage PVs
	Solar/diesel mini-grid
	Solar LED lamps
	Solar PVs, small isolated grid, 100% solar
	Solar street lights
	Parabolic through CSP, no storage
	Solar tower CSP, with storage
Transport	20% Biodiesel blend in all diesel
	15% Bioethanol blend in all gasoline
	Bus Rapid Transit (BRT)
	More efficient gasoline cars
	More efficient diesel cars
	Natural Gas cars
	Electric cars
	Electric 18m buses
	Electric 12m buses
	Electric heavy trucks
	Electric light trucks
	Electric rail
	Shifting passengers from car to rail
	Shifting freight transport from road to rail
	Restriction on import of used cars
	New bicycle lanes
	Electric three-wheelers
	Electric two-wheelers
	Better maintenance and use of motor bikes
Wind	Wind turbines, on-shore
	Wind turbines, on-shore with 24 storage
	Wind turbines, off-shore

9.2 ANEXO 2 OPCIONES DE MITIGACION ADICIONALES

Las opciones que se muestran a continuación se pueden utilizar para evaluar actividades relacionadas a las metas CND si es que se desarrollan y ejecutan en los proyectos futuros.

TIPO	OPCIONES DE MITIGACIÓN
Hydro	Mini hydro power connected to main grid (Mini centrales hidroeléctricas conectadas a la red
(hídrico)	principal)
	Mini hydro power off grid (Mini centrales hidroeléctricas fuera de la red)

1 MW Mini hydro power co	nnected to ma	in grid 2020						
Costs in	Reduction	Reference	Increase		General inputs:			
US\$	Option	Option	(RedRef.)		Discount rate	7%		
Total investment	4.500.000		4.500.000		Reference electricity price	0,20	US\$/kWh	
Project life	20				CO2-eq. emission coefficient	0,49	tCO2/MV	
Lev. investment	424.768		424.768			•	•	
Annual O&M	22.500		22.500		Reduction option: Hydro Power			
Annual fuelcost		800.000	-800.000		O&M		Of investi	
Total annual cost	447.268	800.000	-352.732		Activity	1	MW	
				ĺľ	Investment in Activity		US\$/kW	
Annual emissions (tons)	Tons	Tons	Reduction	ĺĺ	Capacity factor		Full time	
Fuel CO2-eq. emission		1.942	1.942	ĺĺ	Electricity production	4000	MWh/ yea	
Other						•	•	
Total CO2-eq. emission	0	1.942	1.942	i i	Reference option: No hydro power plant			
	•			l l				
US\$/ton CO2-eq.			-181,6	i i				

1 MW Milli flydro power oli-grid								
Costs in	Reduction	Reference	Increase					
US\$	Option	Option	(RedRef.)					
Total investment	4.000.000		4.000.000					
Project life	20							
Lev. investment	377.572		377.572					
Annual O&M	20.000		20.000					
Annual fuelcost		452.413	-452.413					
Total annual cost	397.572	452.413	-54.841					
Annual emissions (tons)	Tons	Tons	Reduction					
Fuel CO2-eq. emission	0	3.232	3.232					
Other								
Total CO2-eq. emission	0	3.232	3.232					
US\$/ton CO2-eq.			-17,0					

1 MW Mini bydro nower off-grid

General inputs:		
Discount rate	7%	
Reduction option: Hydro Power		
O&M		Of investment
Activity	1	MW
Investment in Activity		US\$/kW
Capacity factor		Full time hours
Electricity production	4000	MWh/ year
Reference option: Existing diesel	generato	r
CO2-eq. emission coefficient	74,1	kgCO2-eq./GJ
Efficiency of diesel		
Diesel consumption	43636	GJ
Diesel price	10,4	US\$/GJ

TIPO	OPCIONES DE REDUCCIÓN												
Solar (solar)	Solar	PVs,	large	grid	with	24h	storage	(Energía	solar	fotovoltaica,	red	amplia	con
Solai (Solai)	almac	enam	iento)										

Solar PVs, large grid, 1 MW - 24	4h storage – 2025					
Costs in	Reduction	Reference	Increase	General inputs:		
US\$	Option	Option	(RedRef.)	Discount rate	7%	
Total investment	2.100.000		2.100.000	Reference electricity price		US\$/kWh
Project life	20			CO2-eq. emission coefficient		tCO2/MWh
Lev. investment	198.225		198.225			
Annual O&M	21.000		21.000	Activity: Solar PV		_
Annual fuelcost		365.000	- 365.000	Size of solar PV		MW
Total annual cost	219.225	365.000	- 145.775	Investment in Activity		US\$/kW
				Daily insolation		hours
Annual emissions (tons)	Tons	Tons	Reduction	Annual capacity factor	1825	Full tir hours
Fuel CO2-eq. emission		886	886	Efficiency factor		
Other				O&M		Of investmen
Total CO2-eq. emission	-	886	886	Electricity production	1825	MWh/year
				Electricity production per day	5000	kWh/day
US\$/ton CO2-eq.			-164,5	Unit cost of batteries		US\$/kWh
				Total cost of batteries	60000	US\$
				Cost of electricity produced	0,120	US\$/kWh
				Reference option: No solar		

TIPO	OPCIONES DE REDUCCIÓN
Transport	Electric 18m buses (Buses eléctricos de 18 metros)
(transporte)	Electric 12m buses (Buses eléctricos de 12 metros)

Electricity production

1825

MWh

Electric 18m buses articulated (1000 buses) in 2025								
Costs in	Reduction	Reference	Increase		General inputs:			
US\$	Option	Option	(RedRef.)	Ī	Discount rate	7%		
	679.250.00	300.000.00	379.250.00	Ī				
Total investment	0	0	0		Annual distance		km	
				Ī				
Project life	12	12			Activity	1.000	Buses	

Lev. investment	85.518.926	37.770.597	47.748.329
Annual O&M	3.396.250	3.000.000	396.250
Annual fuel cost	14.702.70	10.144.04	4.558.657
	103.617.87		
Total annual cost	8	50.914.642	52.703.236
Annual emissions (tons)	Tons	Tons	Reduction
Fuel CO2-eq. emission Other	35.691	72.468	36.777
Total CO2-eq. emission	35.691	72.468	36.777
US\$/ton CO2-eq.			

Reduction option: Electric							
	US\$						
	US\$						
	Stations						
	kWh						
	US\$/kWh						
	of						
	investment						
	km/kWh						
73.514	MWh						
0,20	US\$/kWh						
0,49	tCO2/MWh						
35.691	tCO2						
33.03.	1002						
1,04	US\$/km						
sel buses							
	US\$						
	of						
	investment						
	km/l						
0,38	US\$/liter						
26,88	Million liters						
36,4	GJ						
	kgCO2-						
74,1	eq./GJ						
72 460	tCO2						
72.408	1002						
72.408	1002						
	0,20 0,49 35.691 1,04 sel buses 0,38 26,88						

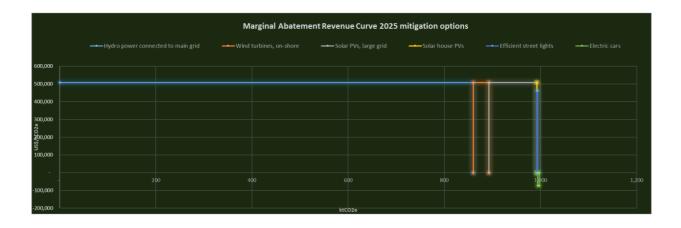
Electric 12m buses (1000 buses) in 202	Electric 12m buses (1000 buses) in 2025									
Costs in	Reduction	Reference	Increase							
US\$	Option	Option	(RedRef.)							
	299.000.00		199.000.00							
Total investment	0	100.000	0							
Project life	12	12								
Lev. investment	37.644.695	12.590.199	25.054.496							
Annual O&M	1.495.000	1.000.000	495.000							
Annual fuel cost	5.881.081	3.870.343	2.010.738							
Total annual cost	45.020.776	17.460.542	27.560.233							
	•									
Annual emissions (tons)	Tons	Tons	Reduction							
Fuel CO2-eq. emission	14.276	27.649	13.373							
Other										
Total CO2-eq. emission	14.276	27.649	13.373							
US\$/ton CO2-eq.			2.061							

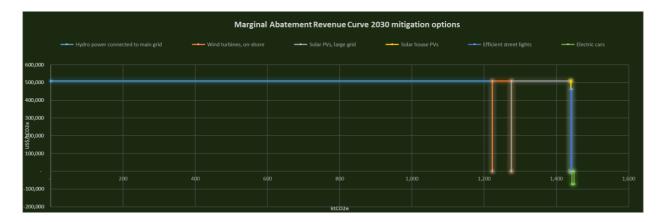
General inputs:				
Discount rate	7%			
Annual distance		km		
Activity	1.000	Buses		
Reduction option: Electric				
buses				
Investment in vehicle		US\$		
Cost of 1 charging station		US\$		
Number of charging stations		Stations		
Size of battery		kWh		
Investment in battery		US\$/kWh		
		of		
Annual O&M		investment		
Electricity consumption		km/kWh		
Total electricity consumption	29.405	MWh		
Reference electricity price	0,20	US\$/kWh		
CO2-eq. emission coefficient	0,49	tCO2/MWh		

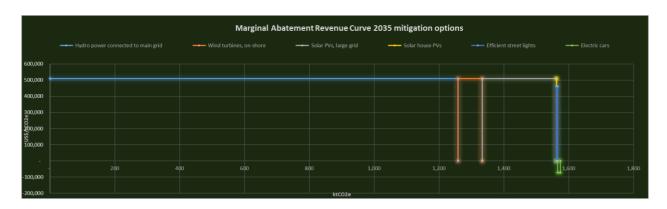
Emissions from electricity	14.276	tCO2		
Economic efficiency	1,13	US\$/km		
Reference option: Normal diesel buses				
Investment in one bus		US\$		
		of		
Annual O&M		investment		
Diesel consumption		km/l		
Diesel price	0,38	US\$/liter		
Total diesel consumption	10,26	Million liters		
1000 l diesel =	36,4	GJ		
		kgCO2-		
CO2-eq. emission coefficient	74,1	eq./GJ		
Emissions from diesel	27.649	tCO2		
Economic efficiency	0,44	US\$/km		

TIPO	OPCIONES DE REDUCCIÓN
Solar (solar)	Solar/diesel mini-grid (Mini red solar/diesel)

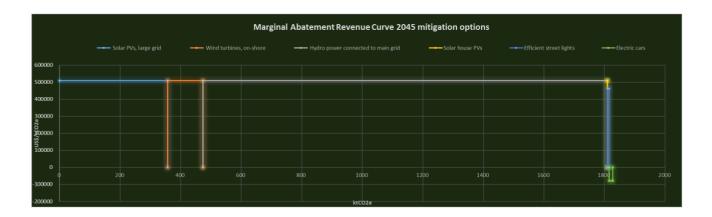
Costs in	Reduction	Reference	Increase	General inputs:		
US\$	Option	Option	(RedRef.)	Discount rate	7%	
Total investment	60.000		60.000	Efficiency of diesel		
Project life	20			Cost of diesel	10,4	US\$/GJ
Lev. investment	5.664		5.664	CO2-eq. emission coefficient		tCO2/MWh
Annual O&M	600		600		•	
Annual fuelcost		701	701	Activity: Solar/diesel mini-grid PV		
Total annual cost	6.264	701	5.563	Capacity of plant	100	kW
	•			Size of the diesel	150	kW
Annual emissions (tons)	Tons	Tons	Reduction	Minimum load on diesel	40%	kW
Fuel CO2-eq. emission		58	58	Size of solar PV	40	kW
Other				Investment in Activity		US\$/kW
Total CO2-eq. emission		58	58	Daily insolation		hours
	·			Annual capacity factor	1825	Full time
US\$/ton CO2-eq. 95,3		95,3	O&M		Of investment	
				Solar production	73	MWh
				Cost of solar electricity	85,8	
				produced	0	US\$/kWh
				Reference option: No solar PVs -	pure di	esel
				Electricity production	73	MWh
				Diesel used	68	GJ

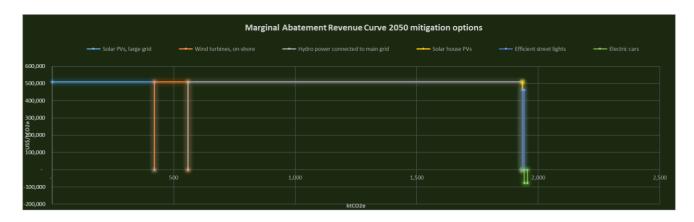






9.3 ANEXO 3 GRAFICAS DE REDUCCION DE COSTOS POR **OPCION DE MITIGACION**





9.4 ANEXO 4 GUIA HERRAMIENTA LEAP

Capítulo 1: Introducción al Manual

1.1 Propósito del Manual

El objetivo de este manual es capacitar a los usuarios en el uso del Sistema de Planeamiento de Alternativas Energéticas de Largo Plazo (LEAP), una herramienta ampliamente utilizada para modelar y proyectar escenarios energéticos y de emisiones. Este manual está diseñado para guiar tanto a principiantes como a usuarios con experiencia en la creación de proyecciones de demanda, oferta y emisiones, permitiendo analizar políticas energéticas, eficiencia energética y tecnologías de mitigación de emisiones.

LEAP es especialmente relevante para el contexto boliviano, donde la planificación energética y la reducción de emisiones juegan un papel fundamental en el cumplimiento de los compromisos climáticos internacionales, como el Acuerdo de París. A través de este manual, los usuarios aprenderán a utilizar LEAP para construir escenarios de consumo y generación de energía, analizar el impacto de políticas energéticas y comparar los resultados de diversos enfoques de mitigación.

1.2 Requisitos Previos

Para obtener el máximo provecho de este manual, se recomienda que los usuarios tengan conocimientos básicos en los siguientes temas:

- 1. Conceptos Energéticos Fundamentales: Es útil tener familiaridad con términos como demanda y oferta de energía, tipos de fuentes energéticas (fósiles, renovables), y conceptos de eficiencia energética. Estos conocimientos facilitarán la interpretación de los datos y su modelado en LEAP.
- 2. Tipos de Emisiones y Factores de Emisión: Conocer los principales gases de efecto invernadero (GEI) y sus factores de emisión es esencial para entender cómo se calculan y proyectan las emisiones en el software. Además, es importante saber cómo el uso de diferentes combustibles (diésel, gas natural, electricidad) afecta el nivel de emisiones.
- 3. Habilidad en el Uso de Hojas de Cálculo: Dado que LEAP requiere la entrada y manipulación de datos, la familiaridad con hojas de cálculo como Excel puede ser muy útil. Los usuarios deberán ajustar fórmulas, aplicar tasas de crecimiento y hacer cálculos básicos de datos para modelar correctamente los escenarios.
- 4. Conocimiento General de Modelado Energético y Proyecciones: Si bien no es obligatorio, un entendimiento básico de cómo se realizan proyecciones a futuro en el sector energético (por ejemplo, estimaciones de crecimiento poblacional y demanda) contribuirá a una experiencia más rica al trabajar con LEAP.

1.3 Estructura del Manual

Este manual está organizado en varios capítulos que guían al usuario desde los conceptos básicos de instalación y configuración de LEAP hasta el análisis detallado de escenarios energéticos y proyecciones de emisiones. La estructura modular permite a los usuarios seleccionar los capítulos o ejercicios que más se ajusten a sus necesidades o nivel de conocimiento, permitiendo avanzar progresivamente en el uso del software.

- 1. Capítulo 2 Primeros Pasos en LEAP: Proporciona instrucciones detalladas para la instalación de LEAP, una guía de navegación de la interfaz, y describe las vistas principales del software.
- 2. Capítulo 3 Ejercicios Prácticos Adaptados: Incluye ejercicios para construir escenarios de demanda, oferta y emisiones, con ejemplos específicos de políticas de mitigación y eficiencia energética aplicables a Bolivia.
- 3. Capítulo 4 Funcionalidades Avanzadas de LEAP: Explica cómo utilizar opciones avanzadas como fórmulas personalizadas y análisis de sensibilidad para mejorar la precisión y adaptabilidad de los escenarios.
- 4. Capítulo 5 Casos de Estudio y Aplicaciones Prácticas: Presenta estudios de casos aplicados a Bolivia, con ejemplos de políticas energéticas y su impacto en el sistema energético y las emisiones nacionales.
- 5. Capítulo 6 Recursos Adicionales: Ofrece enlaces a recursos externos, un glosario de términos clave, y otros materiales de referencia para profundizar en el aprendizaje de LEAP.

Capítulo 2: Primeros Pasos en LEAP

2.1 Instalación y Configuración

Para comenzar a utilizar LEAP, es necesario instalar el software y realizar una configuración adecuada. A continuación, se describen los pasos de instalación y los ajustes iniciales:

1. Descarga de LEAP:

- Se debe visitar la página oficial de LEAP en https://leap.sei.org/ para descargar el instalador. LEAP está disponible para sistemas Windows.
- Es recomendable registrarse en la página como funcionario público con cuenta institucional para obtener una licencia. LEAP ofrece una licencia gratuita para usuarios en países en desarrollo, del sector público.
- La otorgación de licencia se realiza a través de email, completando lo requerido en el apartado de BIO, esta otorgación tiene una respuesta en los siguientes siete días.

2. Instalación del Software:

- Una vez descargado el archivo, se ejecuta el instalador y se siguen las instrucciones proporcionadas.
- o Durante la instalación, se selecciona el directorio de instalación y se confirman los accesos directos para facilitar el uso del programa.

3. Configuración de la Cuenta y Registro:

- o Al iniciar LEAP por primera vez, se solicita la información de licencia. En este paso, se debe ingresar el código de licencia recibido en el correo de registro.
- En caso de usar una versión de prueba, es importante tener en cuenta que algunas funciones, como la capacidad de guardar proyectos, pueden estar limitadas o sin acceso, por lo que la opción de guardar avances puede o no estar disponible.

4. Configuración de Preferencias Iniciales:

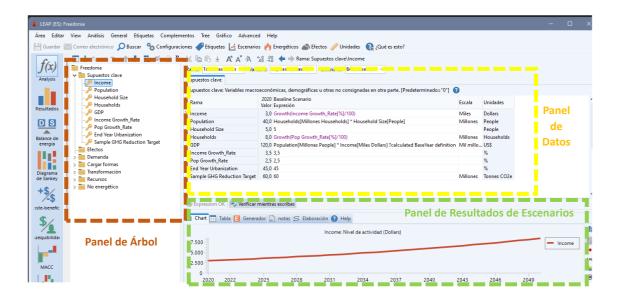
- Se recomienda ajustar el idioma, las unidades de medida (como toneladas de CO₂ o kWh) y el año de inicio del análisis en el menú Opciones > Configuración.
- También se deben configurar las opciones de visualización para que las unidades y el formato se adapten a las necesidades del proyecto, especialmente si se está trabajando con datos específicos del país.

2.2 Navegación Básica en LEAP

La interfaz principal de LEAP está diseñada para facilitar el acceso a las funciones y vistas principales. Familiarizarse con esta interfaz es esencial para trabajar de forma eficiente con el software.

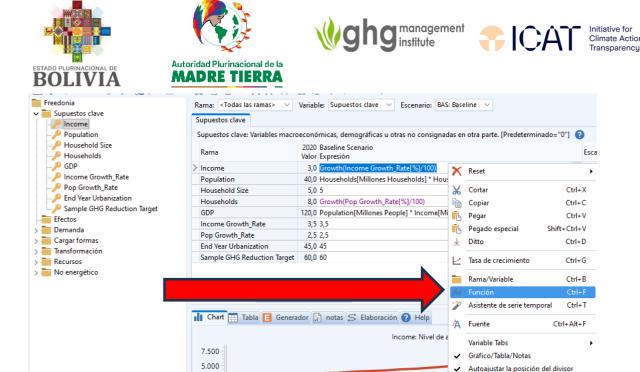
1. Panel de Árbol:

 Este panel, ubicado en la parte izquierda de la pantalla, organiza los escenarios y categorías de datos en una estructura tipo árbol. Desde aquí, el usuario puede navegar entre sectores como demanda, oferta y emisiones.


 Al hacer clic en cada nodo del árbol, se pueden abrir subcategorías y detalles adicionales. Por ejemplo, en un escenario de demanda, es posible acceder a sectores como residencial, transporte o industria.

2. Panel de Datos:

- Ubicado al lado derecho superior del espacio de trabajo, el Panel de Datos permite ingresar y editar valores para cada variable seleccionada en el Panel de Árbol. Aquí es donde se introducen los datos de consumo energético, factores de emisión y tasas de crecimiento.
- LEAP presenta diferentes opciones de entrada según el tipo de variable, tales como tablas de valores, gráficos y campos de entrada numérica.


3. Panel de Resultados de Escenarios:

- Situado generalmente en la parte inferior derecha, este panel muestra los resultados preliminares y los impactos de los cambios realizados en los escenarios.
- Permite comparar visualmente las proyecciones de consumo, oferta y emisiones, mostrando de inmediato el efecto de las modificaciones en los datos.

4. Opción de Fórmulas:

- Al hacer clic derecho sobre ciertas variables en el Panel de Datos, se activa la Opción de Fórmulas. Esta función permite aplicar fórmulas y expresiones personalizadas, útiles para realizar cálculos avanzados o introducir variables dinámicas, como tasas de crecimiento anual.
- o Las fórmulas son especialmente útiles para ajustar las proyecciones, aplicar condiciones específicas y agregar flexibilidad a los cálculos.

2.3 Exploración de Vistas en LEAP

2.500

LEAP cuenta con varias vistas principales, cada una diseñada para una función específica en el proceso de modelado y análisis energético. Estas vistas se pueden acceder desde la **Barra de Vistas** ubicada a la izquierda de la pantalla.

1. Vista de Análisis:

 Esta es la vista principal para construir escenarios. Aquí se ingresan los datos, se configuran los escenarios y se crean los modelos de demanda y oferta.

Hel Expandir columna de expresiones

o En esta vista, el usuario puede añadir, eliminar o modificar nodos en el árbol, ajustando los datos de cada sector.

2. Vista de Diagramas:

- Presenta el sistema energético de manera visual a través de diagramas de flujo que muestran cómo se distribuyen las fuentes de energía en el sistema.
- Esta vista es útil para tener una visión gráfica del sistema energético modelado y facilita la comprensión de las interacciones entre los distintos sectores.

3. Vista de Resultados:

- En esta vista, el usuario puede ver y analizar los resultados de los escenarios modelados. Los resultados se presentan en forma de gráficos, tablas y diagramas que comparan las proyecciones de consumo y emisiones en diferentes escenarios.
- La Vista de Resultados es clave para evaluar el impacto de las políticas energéticas modeladas y visualizar el efecto de las medidas de mitigación.

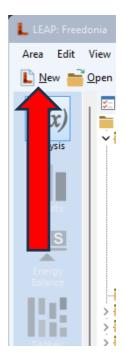
Sugerencia: Para maximizar el espacio en pantalla o simplificar la vista, se puede ocultar la Barra de Vistas desde el menú **Vistas** y seleccionar la opción "Ocultar Barra de Vistas".

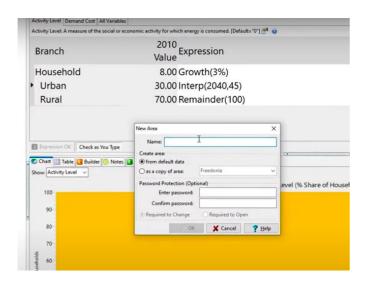
Nota: Las dos últimas vistas se pueden observar luego de haber realizado los cálculos pertinentes.

Capítulo 3: Ejercicios Prácticos Adaptados

Ejercicio 1: Creación del Escenario Base

Objetivo: Enseñar a los usuarios a configurar un escenario de referencia en LEAP, utilizando un país ficticio (Freedonia) o datos nacionales de Bolivia si están disponibles. Este escenario base servirá como punto de partida para todos los ejercicios de modelado.

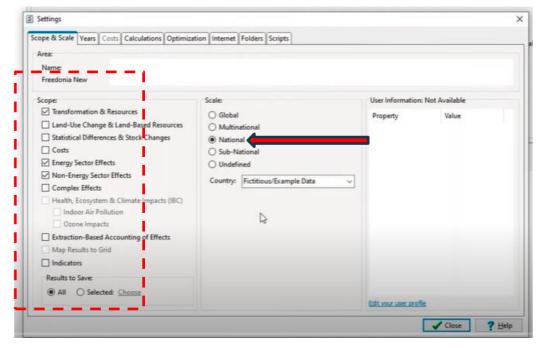

Datos requeridos

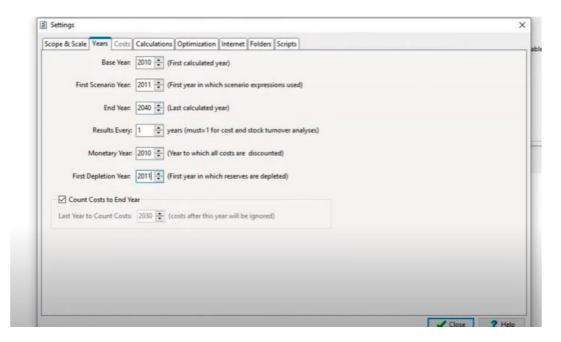

Tipo de Dato	Variable	Unidad
	Población total	personas
	Crecimiento anual de la población	% anual
Datos Demográficos	Tamaño promedio del hogar	personas/hogar
	Tasa de urbanización	%
Ingreso y PIB	PIB per cápita	USD/persona
	Tasa de crecimiento del PIB	% anual
Consumo Energético	Consumo en sectores clave	GWh o MWh
	Distribución de fuentes de energía	%

Secuencia operativa

1. Configuración del Escenario Base:

o Inicialmente se debe crear un nuevo Freedonia, alcance y escala respectiva.





 En el siguiente paso, el usuario define el año base, paso, año final del análisis y selecciona las unidades de medida para energía y emisiones.

 En el Panel de Árbol, se configuran sectores de consumo como residencial, comercial, industrial, y transporte. Si se cuenta con datos de Bolivia, se pueden adaptar los valores iniciales de consumo energético y tipo de fuente utilizada en cada sector.

2. Definición de Variables Clave:

- Para el sector residencial, el usuario puede dividir la demanda entre áreas urbanas y rurales, especificando el consumo de fuentes de energía como electricidad, GLP y biomasa.
- o Este ejercicio permite familiarizarse con la estructura del Panel de Árbol y con la introducción de datos básicos en el Panel de Datos.

3. Guardado del Escenario Base:

 Una vez completados los datos iniciales, se guarda el escenario como referencia para los ejercicios posteriores. El escenario base permite luego realizar comparaciones con escenarios de políticas y medidas alternativas.

Ejercicio 2: Proyección de Demanda Energética

Objetivo: Este ejercicio guía al usuario para proyectar la demanda energética en sectores clave como el industrial, transporte y residencial, aplicando tasas de crecimiento para reflejar cambios a futuro.

Datos requeridos

Tipo de Dato	Variable	Unidad
Crecimiento del Consumo	Tasa de crecimiento en cada sector	% anual
	Mejora en eficiencia de electrodomésticos y equipos	% de mejora
Eficiencia Energética	Eficiencia de maquinaria industrial	% de mejora
	Eficiencia de vehículos	% de mejora
Preferencias de	Distribución proyectada de combustibles	%
Combustible	Cambio en consumo de combustibles en transporte	litros/año o kWh/año

Secuencia operativa

1. Ingreso de Datos por Sector:

- El usuario debe ingresar datos de consumo para cada sector en el año base, como la cantidad de energía utilizada en el sector transporte y el tipo de combustible (gasolina, diésel, electricidad).
- En el sector industrial, es posible ajustar el consumo en función de subsectores relevantes, como la minería y la manufactura, para proyectar el consumo de electricidad y gas natural.

2. Proyección de Crecimiento:

 LEAP permite ajustar una tasa de crecimiento anual para cada tipo de consumo en los sectores seleccionados.

 Se pueden configurar tasas de crecimiento diferentes en áreas urbanas y rurales, con el fin de reflejar las tendencias de crecimiento poblacional y aumento de demanda energética.

3. Análisis de Resultados:

 El Panel de Resultados de Escenarios permite visualizar los efectos de las proyecciones de crecimiento en la demanda energética total. Esta vista ayuda a evaluar el impacto de un aumento en el consumo y las necesidades energéticas futuras.

Ejercicio 3: Generación y Transformación Energética

Objetivo: Enseñar a los usuarios a modelar la generación y transformación de energía en LEAP, utilizando fuentes como gas natural, hidroeléctrica, solar y eólica.

Datos requeridos

Tipo de Dato	Variable	Unidad
Capacidad de Generación	Capacidad instalada por tipo de generación	MW
Capacidad de Generación	Factor de capacidad de cada tipo de planta	%
Pérdidas de Energía	Pérdidas en transmisión y distribución	%
Emisiones	Emisiones de CO ₂ por unidad generada	gCO₂/kWh

Secuencia operativa

1. Configuración de Plantas de Generación:

- En el Panel de Árbol, se agregan categorías para las fuentes de generación eléctrica (hidroeléctrica, gas natural, solar).
- Se asignan factores de capacidad y eficiencia a cada planta, de acuerdo con su tipo de generación. Esto permite calcular cuánta energía genera cada planta en un año, considerando factores de carga y disponibilidad.

2. Pérdidas de Transmisión y Distribución:

 En este paso, el usuario configura los niveles de pérdidas de transmisión y distribución para cada fuente. LEAP calcula cómo estas pérdidas afectan la disponibilidad de energía entregada al usuario final.

3. Cálculo de Emisiones:

 Para las plantas que usan combustibles fósiles, se asignan factores de emisión específicos. LEAP calcula las emisiones generadas en función de la producción de energía de cada tipo de planta.

Ejercicio 4: Escenarios de Políticas Energéticas

Objetivo: Guiar al usuario en la creación de escenarios alternativos que modelen políticas de eficiencia energética y adopción de energías renovables.

Datos requeridos

Tipo de Dato	Variable	Unidad	
Eficiencia Energática	Reducción en consumo en iluminación y refrigeración	% de reducción	
Eficiencia Energética	Reducción en consumo de maquinaria industrial	% de mejora	
Capacidad de Energía	Incremento en capacidad renovable	MW	
Renovable	Factor de capacidad de fuentes renovables	%	
	Costo de implementación de eficiencia y renovables	USD	
Costos y Beneficios	Beneficio en ahorro de combustible	USD/año	
	Reducción de emisiones proyectada	toneladas CO₂/año	

Secuencia operativa

1. Escenario de Eficiencia Energética:

- En el Panel de Árbol, se configura un escenario donde se aplican políticas de eficiencia en sectores específicos, como la reducción de consumo en iluminación y refrigeración en el sector residencial.
- Se puede modelar una disminución en el uso de carbón y otros combustibles de alta emisión, proyectando los beneficios en términos de reducción de consumo y emisiones.

2. Escenario de Aumento de Energías Renovables:

- El usuario configura un escenario en el que aumenta la capacidad de generación solar y eólica, reduciendo la dependencia de plantas de gas natural.
- LEAP permite ajustar la contribución de cada fuente renovable en la matriz energética y analizar el impacto en la reducción de emisiones.

3. Comparación de Escenarios:

 Utilizando la Vista de Resultados, se pueden comparar el escenario base con los escenarios de eficiencia energética y aumento de renovables, evaluando las diferencias en consumo total, emisiones, y costo de cada medida.

Ejercicio 5: Análisis de Transporte

Objetivo: Modelar el consumo de energía en el sector transporte y analizar los efectos de políticas de cambio de combustibles y electrificación de vehículos.

Datos requeridos

Tipo de Dato	Variable	Unidad	
Consumo de Combustible	Consumo promedio por tipo de vehículo	litros/año o m³/año	
	Distancia promedio recorrida	km/año	
	Proporción de vehículos electrificados	%	
Vehículos Eléctricos	Crecimiento en adopción de vehículos eléctricos	% anual	
Emisiones de Combustibles	Emisiones por litro de gasolina, diésel y GLP	gCO ₂ /litro o gCO ₂ /m³	
Emisiones de Combustibles	Reducción de emisiones en electrificación	toneladas CO₂/año	
	Número de estaciones de carga	unidades	
Infraestructura de Carga	Capacidad de carga instalada	kW o MW	
	Consumo adicional de electricidad	kWh/año	

Secuencia operativa

1. Ingreso de Datos de Transporte:

 En el Panel de Árbol, se desglosa el sector transporte en diferentes tipos de vehículos (autos, autobuses, motocicletas) y se ingresan los datos de consumo de combustible.

2. Modelado de Políticas de Electrificación:

- Se crea un escenario alternativo en el que el 10% de los vehículos privados y el 5% de los autobuses se reemplazan por vehículos eléctricos en los próximos 10 años.
- o LEAP permite ajustar la demanda de electricidad en función del aumento en el uso de vehículos eléctricos.

3. Análisis de Resultados:

 El Panel de Resultados de Escenarios permite visualizar la reducción de emisiones resultante de la electrificación del transporte y el impacto en la demanda de electricidad.

Capítulo 4: Funcionalidades Avanzadas de LEAP

4.1 Uso de la Opción de Fórmulas

La **Opción de Fórmulas** en LEAP permite a los usuarios aplicar cálculos personalizados y ajustes avanzados en las variables de entrada. Esta funcionalidad es esencial para modelar escenarios complejos y evaluar cómo pequeñas variaciones en los datos afectan los resultados.

1. Aplicación de Fórmulas a las Variables:

 Al hacer clic derecho sobre ciertas variables en el Panel de Datos, los usuarios pueden acceder a la Opción de Fórmulas, donde es posible introducir expresiones específicas para controlar el comportamiento de las variables. Por ejemplo, se pueden definir tasas de crecimiento anual para proyectar el aumento en la demanda energética de un sector.

2. Tipos de Fórmulas Comunes:

 LEAP permite varias expresiones, como fórmulas de crecimiento logístico, tasas de crecimiento anual, y fórmulas condicionales. Por ejemplo, los usuarios pueden definir que el crecimiento de la demanda en el sector industrial se reduzca en un año específico al introducir condiciones en la fórmula.

3. Personalización de Escenarios mediante Fórmulas:

 Las fórmulas pueden ser aplicadas en escenarios alternativos para modelar políticas de eficiencia energética o cambios en el tipo de combustible. Al aplicar fórmulas, los usuarios tienen control sobre el comportamiento de cada sector, lo cual permite un análisis más preciso y adaptado a las políticas energéticas.

4.2 Análisis de Sensibilidad

El **Análisis de Sensibilidad** en LEAP permite evaluar cómo diferentes variables afectan los resultados de un escenario. Esta funcionalidad es especialmente útil para identificar los factores más influyentes en el consumo energético y en las emisiones.

1. Configuración del Análisis de Sensibilidad:

 En el Panel de Análisis, los usuarios pueden seleccionar variables clave y definir rangos de variación. Por ejemplo, al analizar el sector transporte, pueden ajustarse factores como la eficiencia de los vehículos y el crecimiento del parque vehicular.

2. Evaluación de Impacto en Resultados:

 LEAP genera escenarios de sensibilidad mostrando cómo varían los resultados (en términos de consumo y emisiones) con cambios en los parámetros seleccionados.
 Esto permite identificar las variables críticas que deben ser monitoreadas y ajustadas para cumplir con los objetivos energéticos y climáticos.

3. Interpretación de Resultados del Análisis de Sensibilidad:

 Los resultados del análisis de sensibilidad se presentan en gráficos comparativos que ilustran el rango de variación de cada escenario. Esto es útil para evaluar la robustez de las políticas energéticas y ajustar los valores en función de la incertidumbre.

4.3 Exportación de Datos y Generación de Reportes

LEAP permite la **exportación de datos y resultados** en diversos formatos, lo que facilita la integración de los análisis en reportes y presentaciones. Esta funcionalidad es clave para comunicar de manera clara los resultados de los modelos energéticos y las proyecciones de emisiones.

1. Exportación de Resultados a Hojas de Cálculo:

- Los usuarios pueden exportar tablas y gráficos a programas de hojas de cálculo como
 Excel, lo cual permite realizar cálculos adicionales o presentaciones personalizadas.
- o Al exportar los datos en formatos compatibles, es posible compartir los resultados con otras partes interesadas y facilitar el análisis externo.

2. Generación de Gráficos y Tablas para Reportes:

 LEAP ofrece opciones de personalización para gráficos y tablas, incluyendo ajustes de colores, tipos de gráficos (líneas, barras, etc.), y formato de los ejes. Esto permite a los usuarios crear visualizaciones efectivas para presentar los hallazgos de los escenarios.

3. Creación de Reportes Automáticos en LEAP:

 LEAP permite la generación de reportes automáticos en formatos como PDF, con datos y gráficos de los escenarios modelados. Esta opción es ideal para resumir los resultados y proporciona un formato estandarizado de alta calidad para informes oficiales.

Capítulo 5: Casos de Estudio y Aplicaciones Prácticas

5.1 Escenarios para Bolivia

En este apartado, se presentan ejemplos de escenarios aplicables al contexto energético de Bolivia, tomando en cuenta la matriz energética actual del país, los compromisos climáticos y la dependencia de ciertas fuentes de energía.

1. Escenario de Reducción del Uso de Biomasa en Áreas Rurales:

- Este caso de estudio se enfoca en la reducción del uso de biomasa como fuente de energía en áreas rurales, promoviendo la transición hacia combustibles más limpios como el gas licuado de petróleo (GLP).
- En LEAP, se configura un escenario base donde se establece la demanda actual de biomasa en el sector residencial rural. Luego, en el escenario alternativo, se proyecta una disminución gradual en el uso de biomasa, mientras aumenta el consumo de GLP.
- Los resultados muestran cómo la reducción del uso de biomasa impacta en la disminución de emisiones y en la mejora de la eficiencia energética en las zonas rurales.

2. Escenario de Aumento en la Capacidad Hidroeléctrica:

- Bolivia tiene un gran potencial hidroeléctrico, y este escenario explora el impacto de incrementar la capacidad de generación hidroeléctrica para reducir la dependencia de combustibles fósiles.
- En LEAP, se configura un escenario en el cual se proyecta un aumento en la generación hidroeléctrica en un 30% en los próximos diez años, reduciendo al mismo tiempo la generación basada en gas natural.
- El análisis de resultados permite observar cómo esta transición influye en la reducción de emisiones y en la matriz energética del país.

3. Escenario de Electrificación del Transporte:

- Este escenario evalúa el impacto de electrificar una parte de la flota de vehículos en áreas urbanas, especialmente en transporte público y vehículos privados.
- En LEAP, se modela el escenario base utilizando los datos de consumo de combustibles fósiles en el transporte. En el escenario alternativo, se introduce un porcentaje de vehículos eléctricos y se proyecta su crecimiento en los próximos años.
- Los resultados muestran la reducción en el consumo de gasolina y diésel, y cómo la electrificación impacta en las emisiones de GEI en el sector transporte.

5.2 Comparación de Escenarios y Resultados

Este apartado guía al usuario en el análisis comparativo de los resultados obtenidos en los casos de estudio. La comparación de escenarios es fundamental para evaluar la efectividad de diferentes políticas energéticas y comprender los beneficios de las tecnologías de mitigación.

1. Interpretación de Gráficos y Tablas:

- En la Vista de Resultados de LEAP, el usuario puede visualizar gráficos que muestran las diferencias entre los escenarios en términos de consumo energético, emisiones y costos.
- Los gráficos de barras y de líneas permiten observar cómo cada escenario afecta el consumo de energía en los diferentes sectores y en qué medida las políticas propuestas logran reducir las emisiones.

2. Análisis de Beneficios y Costos:

- o Cada escenario puede incluir un análisis de costos asociados a la implementación de tecnologías limpias o medidas de eficiencia energética.
- Los resultados de LEAP pueden exportarse a hojas de cálculo para realizar un análisis detallado de los costos y beneficios, comparando los gastos de inversión inicial con los ahorros en consumo de combustibles y reducción de emisiones a largo plazo.

3. Evaluación de Reducción de Emisiones:

- El usuario puede comparar las reducciones de emisiones de GEI proyectadas en cada escenario. Esta evaluación es crucial para entender el impacto de cada política en el cumplimiento de los compromisos climáticos de Bolivia.
- Los resultados permiten identificar qué políticas y tecnologías son más efectivas para alcanzar las metas de reducción de emisiones en el corto y largo plazo.

Capítulo 6: Recursos Adicionales

6.1 Enlaces y Recursos de LEAP

Para facilitar el aprendizaje y la resolución de dudas sobre el uso de LEAP, a continuación, se presentan algunos recursos en línea recomendados:

1. Página Oficial de LEAP:

- o El sitio oficial de LEAP (https://leap.sei.org/) ofrece información detallada sobre las funcionalidades del software, opciones de descarga, y requisitos del sistema.
- o En este sitio se pueden encontrar guías y actualizaciones frecuentes sobre las nuevas características de LEAP.

2. Foro de Usuarios de LEAP:

 LEAP cuenta con un foro de usuarios activo en https://leap.sei.org/default.asp?action=forum, donde los usuarios pueden hacer preguntas, compartir experiencias y obtener ayuda de otros miembros de la comunidad y del equipo de soporte de LEAP.

3. Manuales y Documentación Oficial:

 La documentación oficial y guías adicionales están disponibles en https://leap.sei.org/default.asp?action=library. Estos manuales son útiles para explorar temas avanzados y ver ejemplos de aplicación en diversos contextos.

4. Videos Tutoriales y Webinars:

 Existen varios videos tutoriales y webinars que enseñan el uso de LEAP en escenarios específicos. Algunos de estos recursos pueden encontrarse en el canal de YouTube de SEI (https://www.youtube.com/user/SElorg) o en el sitio oficial de LEAP.

5. Recursos de la Alianza NDC:

 La NDC Partnership ofrece guías y estudios de caso sobre la implementación de contribuciones determinadas a nivel nacional, muchos de los cuales utilizan LEAP y otras herramientas de proyección. La información puede consultarse en https://ndcpartnership.org/.

6.2 Glosario de Términos

Este glosario contiene definiciones de términos técnicos utilizados en el manual y en el análisis energético con LEAP. Estas definiciones están diseñadas para ayudar a los usuarios a comprender mejor los conceptos y variables con los que trabajarán.

- Análisis de Sensibilidad: Técnica utilizada para evaluar cómo diferentes valores en variables específicas afectan los resultados de un modelo. En LEAP, se usa para probar la robustez de escenarios bajo distintas condiciones.
- **Escenario Base**: Representa la situación actual o de referencia sin intervención de políticas nuevas. Este escenario sirve para comparar el impacto de políticas o cambios proyectados en otros escenarios.

- Factor de Emisión: Parámetro que indica la cantidad de GEI emitidos por unidad de actividad (como kWh de electricidad o litro de combustible). Es esencial para calcular las emisiones en modelos energéticos.
- **Mitigación**: Conjunto de políticas y medidas que buscan reducir o limitar las emisiones de gases de efecto invernadero (GEI).
- **Proyección de Demanda**: Estimación del consumo futuro de energía en diferentes sectores (residencial, industrial, transporte, etc.), basada en factores como crecimiento poblacional y mejoras tecnológicas.
- Reducción de Emisiones: Cantidad de emisiones de GEI que se evita mediante la implementación de políticas de mitigación o tecnologías limpias en comparación con el escenario base.
- Tasa de Crecimiento Anual: Porcentaje de aumento o disminución proyectado de una variable (como consumo energético) cada año. En LEAP, se usa para proyectar el consumo futuro de energía en los diferentes escenarios.
- Transmisión y Distribución de Energía: Proceso de transportar energía desde las plantas generadoras hasta los usuarios finales. Las pérdidas en este proceso son un factor importante en el análisis de eficiencia energética.

Para obtener más detalles sobre cada una de estas vistas, se puede consultar la sección de Ayuda en LEAP.